【題目】已知 為整數(shù),且,,為正整數(shù),,,記.
(1)試用分別表示;
(2)用數(shù)學(xué)歸納法證明:對一切正整數(shù),均為整數(shù).
【答案】(1) ; (2)見解析.
【解析】
(1)令,結(jié)合條件,即可求解;
(2)運(yùn)用數(shù)學(xué)歸納法和兩角和差的公式,結(jié)合條件,即可得到證明.
(1)由題意,令,可得,
所以
(2) ①當(dāng)n=1時(shí),由(1)得A1=x2-y2,B1=2xy.
因?yàn)?/span>x,y為整數(shù),
所以A1,B1均為整數(shù),所以結(jié)論成立;
②當(dāng)n=k(k≥2,k∈N*)時(shí),假設(shè)Ak,Bk均為整數(shù),
則當(dāng)n=k+1時(shí),Ak+1=(x2+y2)k+1cos (k+1)θ
=(x2+y2)(x2+y2)k(cos kθcos θ-sin kθsin θ)
=(x2+y2)cos θ·(x2+y2)kcos kθ-(x2+y2)ksin kθ·(x2+y2)sinθ
=A1·Ak-B1·Bk.
因?yàn)?/span>A1,B1,均為整數(shù),所以Ak+1也為整數(shù),
即當(dāng)n=k+1時(shí),結(jié)論也成立.
綜合①②得,對一切正整數(shù)n,An均為整數(shù).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2-(a+1)x+alnx+1
(Ⅰ)若x=3是f(x)的極值點(diǎn),求f(x)的極大值;
(Ⅱ)求a的范圍,使得f(x)≥1恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面直角坐標(biāo)系,直線過點(diǎn),且傾斜角為,以為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為.
(1)求直線的參數(shù)方程和圓的標(biāo)準(zhǔn)方程;
(2)設(shè)直線與圓交于、兩點(diǎn),若,求直線的傾斜角的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知函數(shù)
(1)設(shè)時(shí),判斷函數(shù)在上的零點(diǎn)的個(gè)數(shù);
(2)當(dāng),是否存在實(shí)數(shù),對且,有恒成立,若存在,求出的范圍:若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某機(jī)械廠要將長,寬的長方形鐵皮進(jìn)行裁剪.已知點(diǎn)為的中點(diǎn),點(diǎn)在邊上,裁剪時(shí)先將四邊形沿直線翻折到處(點(diǎn),分別落在直線下方點(diǎn),處,交邊于點(diǎn),再沿直線裁剪.
(1)當(dāng)時(shí),試判斷四邊形的形狀,并求其面積;
(2)若使裁剪得到的四邊形面積最大,請給出裁剪方案,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐P-ABC中,AC⊥BC,且,AC=BC=2,D,E分別為AB,PB中點(diǎn),PD⊥平面ABC,PD=3.
(1)求直線CE與直線PA夾角的余弦值;
(2)求直線PC與平面DEC夾角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近一段時(shí)間來,由于受非洲豬瘟的影響,各地豬肉價(jià)格普遍上漲,生豬供不應(yīng)求。各大養(yǎng)豬場正面臨巨大挑戰(zhàn),目前各項(xiàng)針對性政策措施對于生豬整體產(chǎn)能恢復(fù)、激發(fā)養(yǎng)殖戶積極性的作用正在逐步顯現(xiàn).
現(xiàn)有甲、乙兩個(gè)規(guī)模一致的大型養(yǎng)豬場,均養(yǎng)有1萬頭豬.根據(jù)豬的重量,將其分為三個(gè)成長階段如下表.
豬生長的三個(gè)階段
階段 | 幼年期 | 成長期 | 成年期 |
重量(Kg) |
根據(jù)以往經(jīng)驗(yàn),兩個(gè)養(yǎng)豬場內(nèi)豬的體重均近似服從正態(tài)分布.
由于我國有關(guān)部門加強(qiáng)對大型養(yǎng)豬場即將投放市場的成年期的豬監(jiān)控力度,高度重視其質(zhì)量保證,為了養(yǎng)出健康的成年活豬,甲、乙兩養(yǎng)豬場引入兩種不同的防控及養(yǎng)殖模式.已知甲、乙兩個(gè)養(yǎng)豬場內(nèi)一頭成年期豬能通過質(zhì)檢合格的概率分別為,.
(1)試估算各養(yǎng)豬場三個(gè)階段的豬的數(shù)量;
(2)已知甲養(yǎng)豬場出售一頭成年期的豬,若為健康合格的豬 ,則可盈利元,若為不合格的豬,則虧損元;乙養(yǎng)豬場出售一頭成年期的豬,若為健康合格的豬 ,則可盈利元,若為不合格的豬,則虧損元.記為甲、乙養(yǎng)豬場各出售一頭成年期豬所得的總利潤,求隨機(jī)變量的分布列,假設(shè)兩養(yǎng)豬場均能把成年期豬售完,求兩養(yǎng)豬場的總利潤期望值.
(參考數(shù)據(jù):若,則,,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“更相減損術(shù)”是《九章算術(shù)》中介紹的一種用于求兩個(gè)正整數(shù)的最大公約數(shù)的方法,該方法的算法流程如圖所示,根據(jù)程序框圖計(jì)算,當(dāng)a=35,b=28時(shí),該程序框圖運(yùn)行的結(jié)果是( 。
A.a=6,b=7B.a=7,b=7C.a=7,b=6D.a=8,b=8
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,平面四邊形ABCD中,,,且BC=CD.將CBD沿BD折成如圖2所示的三棱錐,使二面角的大小為.
(1)證明:;
(2)求直線BC'與平面C'AD所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com