【題目】某班要從5名男生3名女生中選出5人擔(dān)任5門不同學(xué)科的課代表,請分別求出滿足下列條件的方法種數(shù).
(1)所安排的女生人數(shù)必須少于男生人數(shù);
(2)其中的男生甲必須是課代表,但又不能擔(dān)任數(shù)學(xué)課代表;
(3)女生乙必須擔(dān)任語文課代表,且男生甲必須擔(dān)任課代表,但又不能擔(dān)任數(shù)學(xué)課代表.
【答案】(1)5520(2)3360(3)360
【解析】
(1)所安排的女生人數(shù)少于男生人數(shù)包括三種情況,
一是2個女生,
二是1個女生,
三是沒有女生,
依題意得種.
(2)先選出4人,有種方法,連同甲在內(nèi),5人擔(dān)任5門不同學(xué)科的課代表,甲不但任數(shù)學(xué)課代表,有種方法,∴方法數(shù)為種.
(3)由題意知甲和乙兩個人確定擔(dān)任課代表,需要從余下的6人中選出3個人,有種結(jié)果,女生乙必須擔(dān)任語文課代表,則女生乙就不需要考慮,其余的4個人,甲不擔(dān)任數(shù)學(xué)課代表,∴甲有3種選擇,余下的3個人全排列共有.
綜上,可知共有20×18=360種.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)藝術(shù)專業(yè)400名學(xué)生參加某次測評,根據(jù)男女學(xué)生人數(shù)比例,使用分層抽樣的方法從中隨機(jī)抽取了100名學(xué)生,記錄他們的分?jǐn)?shù),將數(shù)據(jù)分成7組:[20,30),[30,40),┄,[80,90],并整理得到如下頻率分布直方圖:
(Ⅰ)從總體的400名學(xué)生中隨機(jī)抽取一人,估計其分?jǐn)?shù)小于70的概率;
(Ⅱ)已知樣本中分?jǐn)?shù)小于40的學(xué)生有5人,試估計總體中分?jǐn)?shù)在區(qū)間[40,50)內(nèi)的人數(shù);
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,過函數(shù)的圖象上的兩點(diǎn),作軸的垂線,垂足分別為,,線段與函數(shù)的圖象交于點(diǎn),且與軸平行.
(1)當(dāng),,時,求實(shí)數(shù)的值;
(2)當(dāng)時,求的最小值;
(3)已知,,若,為區(qū)間內(nèi)任意兩個變量,且,
求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】王久良導(dǎo)演的紀(jì)錄片《垃圾圍城》真實(shí)地反映了城市垃圾污染問題,目前中國668個城市中有超過的城市處于垃圾的包圍之中,且城市垃圾中的快遞行業(yè)產(chǎn)生的包裝垃圾正在逐年攀升,有關(guān)數(shù)據(jù)顯示,某城市從2016年到2019年產(chǎn)生的包裝垃圾量如下表:
年份x | 2016 | 2017 | 2018 | 2019 |
包裝垃圾y(萬噸) | 4 | 6 | 9 | 13.5 |
(1)有下列函數(shù)模型:①;②;③.試從以上函數(shù)模型中,選擇模型________(填模型序號),近似反映該城市近幾年包裝垃圾生產(chǎn)量y(萬噸)與年份x的函數(shù)關(guān)系,并直接寫出所選函數(shù)模型解析式;
(2)若不加以控制,任由包裝垃圾如此增長下去,從哪年開始,該城市的包裝垃圾將超過40萬噸?(參考數(shù)據(jù):)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】大學(xué)生小王自主創(chuàng)業(yè),在鄉(xiāng)下承包了一塊耕地種植某種水果,每季投入2萬元,根據(jù)以往的經(jīng)驗(yàn),每季收獲的此種水果能全部售完,且水果的市場價格和這塊地上的產(chǎn)量具有隨機(jī)性,互不影響,具體情況如表:
(Ⅰ)設(shè)表示在這塊地種植此水果一季的利潤,求的分布列及期望;
(Ⅱ)在銷售收入超過5萬元的情況下,利潤超過5萬元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的左焦點(diǎn)為,離心率為,為圓的圓心.
(1)求橢圓的方程;
(2)已知過橢圓右焦點(diǎn)的直線交橢圓于兩點(diǎn),過且與垂直的直線與圓交于兩點(diǎn),求四邊形面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,a1=3,且Sn=nan+1-n2-n.
(1)求{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足,求{bn}的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是定義在上的偶函數(shù),對任意,都有,且當(dāng)時,.在區(qū)間內(nèi)關(guān)于的方程恰有個不同的實(shí)數(shù)根,則實(shí)數(shù)的取值范圍是_________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com