精英家教網 > 高中數學 > 題目詳情
設i是虛數單位,
.
z
是復數z=
1
2
+
3
2
i的共軛復數,則z2
.
z
=(  )
A、
1
2
+
3
2
i
B、
1
2
-
3
2
i
C、-
1
2
+
3
2
i
D、-
1
2
-
3
2
i
考點:復數代數形式的乘除運算
專題:數系的擴充和復數
分析:直接利用復數代數形式的除法運算化簡求值.
解答: 解:由z=
1
2
+
3
2
i,得
.
z
=
1
2
-
3
2
i

∴z2
.
z
=(z•
.
z
)•z
=
(
1
2
)2+(
3
2
)2
•z
=
1
2
+
3
2
i

故選:A.
點評:本題考查復數代數形式的除法運算,考查了復數模的求法,是基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

使函數f(x)=
(3a-1)x+4a , x≤1
logax , x>1
在(-∞,+∞)上是減函數的一個充分不必要條件是( 。
A、
1
7
≤a<
1
3
B、0<a<
1
3
C、
1
7
<a<
1
3
D、0<a<
1
7

查看答案和解析>>

科目:高中數學 來源: 題型:

已知平面向量
a
=(2,3),
b
=(x,y),
b
-
2a
=(1,7),則x,y的值分別是( 。
A、
x=-3
y=1
B、
x=
1
2
y=-2
C、
x=
3
2
y=5
D、
x=5
y=13

查看答案和解析>>

科目:高中數學 來源: 題型:

已知a>b>c,則下面式子一定成立的是(  )
A、ac>bc
B、a-c>b-c
C、
1
a
1
b
D、a+c=2b

查看答案和解析>>

科目:高中數學 來源: 題型:

過拋物線y2=2px(p>0)的焦點作傾斜角為30°的直線l與拋物線交于P、Q兩點,分別過P、Q兩點作PP1,QQ1垂直于拋物線的準線于P1、Q1,若|PQ|=2,則四邊形PP1Q1Q的面積是( 。
A、
3
B、2
C、3
D、1

查看答案和解析>>

科目:高中數學 來源: 題型:

方程3x+1-x=6的解所在的區(qū)間是(  )
A、(0,1)
B、(1,2)
C、(2,3)
D、(3,4)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知邊長為1的正三角形ABC,D是BC的中點,E是AC上一點且AE=2EC.則
AD
BE
=( 。
A、
1
4
B、-
1
4
C、0
D、4

查看答案和解析>>

科目:高中數學 來源: 題型:

已知各項為正數的等差數列{an}滿足a3•a7=32,a2+a8=12,且bn=2-an(n∈N*).
(Ⅰ)求數列{an}的通項公式;
(Ⅱ)設cn=an+bn,求數列{cn}的前n項和Sn

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,矩形ABCD中,AB=10,BC=6,沿對角線BD吧△ABD折起到△A1BD的位置,使A1在平面BCD上的射影O恰好在CD上.
(1)求證:BC⊥A1D;
(2)求直線A1C與平面A1BD所成角的余弦值.

查看答案和解析>>

同步練習冊答案