已知x,y分別滿足xx=e2,y+lny=ln2,則xy=
 
考點:對數(shù)的運算性質,指數(shù)式與對數(shù)式的互化
專題:函數(shù)的性質及應用
分析:由xx=e2,y+lny=ln2,化為lnx=
2
x
,ey=
2
y
.由于y=lnx與y=ex化為反函數(shù),即可得出.
解答: 解:∵xx=e2,y+lny=ln2,
∴l(xiāng)nx=
2
x
,ey=
2
y

由于y=lnx與y=ex化為反函數(shù),
則xy=2.
故答案為:2
點評:本題考查了化為反函數(shù)的性質、指數(shù)與對數(shù)函數(shù)的運算性質,考查了推理能力與計算能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}的前n項和為Sn,S1=2,當n≥2時,Sn=3Sn-1則數(shù)列{an}的通項公式為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
3
sinωxcosωx-cos2ωx+
1
2
(ω>0)經(jīng)化簡后利用“五點法”畫其在某一個周期內的圖象時,列表并填入的部分數(shù)據(jù)如下表:
x
2
3
π
5
3
π
f(x)010-10
(Ⅰ)請直接寫出①處應填的值,并求函數(shù)f(x)在區(qū)間[-
π
2
,
π
3
]上的值域;
(Ⅱ)△ABC的內角A,B,C所對的邊分別為a,b,c,已知f(A+
π
3
)=1,b+c=4,a=
7
,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將f(x)=sinx圖象上的所有點向右移動
π
3
個單位長度,再將所得各點的橫坐標縮短到原來的
1
2
,求所得函數(shù)解析式
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知一組正數(shù)x1,x2,x3的方差s2=
1
3
(x12+x22+x32-12),則數(shù)據(jù)x1+1,x2+1,x3+1的平均數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)A={x|y=cos(
1
x+1
)},B={y|y=tanx,x∈[-
π
4
,
π
4
]},則A∩B=( 。
A、∅
B、{x|x≠-1}
C、{x|-1≤x≤1}
D、{x|-1<x≤1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a∈R,復數(shù)z=(a-2i)(1+i)(i為虛數(shù)單位)在復平面內對應的點為M,則“a=0”是“點M在第四象限”的( 。
A、充分而不必要條件
B、必要而不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

集合A={x|0<x<2},B={x|x2-x>0},則A∩B=( 。
A、RB、(-∞,0)∪(1,2)
C、∅D、(1,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若|
a
|=|
b
|=|
c
|=1,且<
a
,
b
>=
π
2
,則(
a
+
b
-
2
c
)•(
a
+
b
+
2
c
)=( 。
A、0B、1C、2D、3

查看答案和解析>>

同步練習冊答案