【題目】已知函數(shù)f(x)=Asin(ωx+φ)(其中x∈R,A>0,ω>0, )的部分圖象如圖所示
(Ⅰ)求A,ω,φ的值;
(Ⅱ)求f(x)的單調(diào)增區(qū)間.
【答案】解:(Ⅰ)根據(jù)函數(shù)f(x)=Asin(ωx+φ)(其中x∈R,A>0,ω>0, )的部分圖象,
可得A=1, =3﹣(﹣1)=4= ,∴ω= .
結(jié)合五點(diǎn)法作圖可得 (﹣1)+φ=0,∴φ= ,f(x)=sin( x+ ).
(Ⅱ)令2kπ﹣ ≤ x+ ≤2kπ+ ,求得8k﹣3≤x≤8k+1,可得函數(shù)的增區(qū)間為[8k﹣3,8k+1],k∈Z
【解析】(Ⅰ)由函數(shù)的圖象的頂點(diǎn)坐標(biāo)求出A,由周期求出ω,由五點(diǎn)法作圖求出φ的值,可得函數(shù)的解析式.(Ⅱ)由題意利用正弦函數(shù)的單調(diào)區(qū)間,求得f(x)的單調(diào)增區(qū)間.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線C:y=ax2(a>0)的焦點(diǎn)到準(zhǔn)線的距離為 ,且C上的兩點(diǎn)A(x1 , y1),B(x2 , y2)關(guān)于直線y=x+m對(duì)稱,并且 ,那么m= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xoy中,已知中心在原點(diǎn),焦點(diǎn)在x軸上的雙曲線C的離心率為 ,且雙曲線C與斜率為2的直線l相交,且其中一個(gè)交點(diǎn)為P(﹣3,0).
(1)求雙曲線C的方程及它的漸近線方程;
(2)求以直線l與坐標(biāo)軸的交點(diǎn)為焦點(diǎn)的拋物線的標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠生產(chǎn)甲、乙兩種產(chǎn)品所得利潤(rùn)分別為和(萬(wàn)元),它們與投入資金(萬(wàn)元)的關(guān)系有經(jīng)驗(yàn)公式,,今將150萬(wàn)元資金投入生產(chǎn)甲、乙兩種產(chǎn)品,并要求對(duì)甲、乙兩種產(chǎn)品的投資金額不低于25萬(wàn)元.
(1)設(shè)對(duì)乙產(chǎn)品投入資金萬(wàn)元,求總利潤(rùn)(萬(wàn)元)關(guān)于的函數(shù)關(guān)系式及其定義域;
(2)如何分配使用資金,才能使所得總利潤(rùn)最大?最大利潤(rùn)為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的最小正周期為π,它的一個(gè)對(duì)稱中心為(,0)
(1)求函數(shù)y=f(x)圖象的對(duì)稱軸方程;
(2)若方程f(x)=在(0,π)上的解為x1,x2,求cos(x1-x2)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義在R上的函數(shù)f(x)滿足:y=f(x﹣1)的圖象關(guān)于(1,0)點(diǎn)對(duì)稱,且當(dāng)x≥0時(shí)恒有f(x﹣ )=f(x+ ),當(dāng)x∈[0,2)時(shí),f(x)=ex﹣1,則f(2017)+f(﹣2016)=( )
A.1﹣e
B.﹣1﹣e
C.e﹣1
D.e+1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知元素為實(shí)數(shù)的集合滿足下列條件:①, ;②若,則.
(I)若,求使元素個(gè)數(shù)最少的集合;
(II)若非空集合為有限集,則你對(duì)集合的元素個(gè)數(shù)有何猜測(cè)?并請(qǐng)證明你的猜測(cè)正確.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線l過(guò)點(diǎn)P(-1,2)且與兩坐標(biāo)軸的正半軸所圍成的三角形面積等于.
(1)求直線l的方程.
(2)求圓心在直線l上且經(jīng)過(guò)點(diǎn)M(2,1),N(4,-1)的圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= ,若方程f(x)=a有四個(gè)不同的解x1 , x2 , x3 , x4 , 且x1<x2<x3<x4 , 則x3(x1+x2)+ 的取值范圍是( )
A.(﹣1,+∞)
B.(﹣1,1]
C.(﹣∞,1)
D.[﹣1,1)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com