【題目】某商場為吸引顧客消費推出一項優(yōu)惠活動.活動規(guī)則如下:消費額每滿100元可轉動如圖所示的轉盤一次,并獲得相應金額的返券,假定指針等可能地停在任一位置.若指針停在A區(qū)域返券60元;停在B區(qū)域返券30元;停在C區(qū)域不返券.例如:消費218元,可轉動轉盤2次,所獲得的返券金額是兩次金額之和.

1)若某位顧客消費128元,求返券金額不低于30元的概率;

2)若某位顧客恰好消費280元,并按規(guī)則參與了活動,他獲得返券的金額記為(元).求隨機變量的分布列和數(shù)學期望.

【答案】(1;(2)隨機變量的分布列為:


0

30

60

90

120







其數(shù)學期望

【解析】試題分析:(1)由題意可知,A區(qū)扇形區(qū)域的圓心角為,根據(jù)幾何概型可知,指針停在A區(qū)的概率為,同理可求指針落在B區(qū)域的概率為,指針落在C區(qū)域的概率為,所以若某位顧客消費128元,根據(jù)規(guī)則,可以轉動一次轉盤,若返券金額不低于30元,則指針落在A區(qū)域或落在B區(qū)域,而由于指針落在A區(qū)域或落在B區(qū)域為互斥事件,根據(jù)互斥事件概率加法公式,返券金額不低于30元的概率為

2)若某位顧客消費280,則可以轉動2次轉盤,那么他獲得返券的金額X的所有可能取值為0,30,60,90,120,概率為, , , 。即得到X的分布列,然后可以根據(jù)公式求X的數(shù)學期望。

試題解析:設指針落在A,B,C區(qū)域分別記為事件A,B,C. 則

1)若返券金額不低于30元,則指針落在AB區(qū)域.即

所以消費128元的顧客,返券金額不低于30元的概率是

2)由題意得,該顧客可轉動轉盤2,隨機變量的可能值為0,30,60,90,120

所以,隨機變量的分布列為:


0

30

60

90

120







其數(shù)學期望

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,圓

1)若圓軸相切,求圓的方程;

2)求圓心的軌跡方程;

3)已知,圓軸相交于兩點(點在點的左側).過點任作一條直線與圓 相交于兩點問:是否存在實數(shù),使得?若存在,求出實數(shù)的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 的左、右頂點分別為、,上、下頂點分別為, 為坐標原點,四邊形的面積為,且該四邊形內(nèi)切圓的方程為

(Ⅰ)求橢圓的方程;

(Ⅱ)若、是橢圓上的兩個不同的動點,直線、的斜率之積等于,試探求的面積是否為定值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的前n項和Sn=3n+m(m為常數(shù),n∈N+)
(1)求a1 , a2 , a3;
(2)若數(shù)列{an}為等比數(shù)列,求常數(shù)m的值及an;
(3)對于(2)中的an , 記f(n)=λa2n+1﹣4λan+1﹣7,若f(n)<0對任意的正整數(shù)n恒成立,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)有道數(shù)學題,其中道選擇題, 道填空題,小明從中任取道題,求

1)所取的道題都是選擇題的概率;

2)所取的道題不是同一種題型的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正四棱錐中, , , 分別為, 的中點.

(Ⅰ)求證: 平面;

(Ⅱ)求異面直線所成角的余弦值;

(Ⅲ)若平面與棱交于點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在一次愛心捐款活動中,小李為了了解捐款數(shù)額是否和居民自身的經(jīng)濟收入有關,隨機調(diào)査了某地區(qū)的個捐款居民每月平均的經(jīng)濟收入. 在捐款超過元的居民中,每月平均的經(jīng)濟收入沒有達到元的有個,達到元的有個;在捐款不超過元的居民中,每月平均的經(jīng)濟收入沒有達到元的有.

(1)在下圖表格空白處填寫正確數(shù)字,并說明是否有以上的把握認為捐款數(shù)額是否超過元和居民毎月平均的經(jīng)濟收入是否達到元有關?

(2)將上述調(diào)查所得到的頻率視為概率. 現(xiàn)在從該地區(qū)大量居民中,采用隨機抽樣方法毎次抽取個居民,共抽取次,記被抽取的個居民中經(jīng)濟收入達到元的人數(shù)為,求和期望的值.

每月平均經(jīng)濟收入達到

每月平均經(jīng)濟收入沒有達到

合計

捐款超過

捐款不超過

合計

附: ,其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓心在軸上的圓與直線切于點.

(1)求圓的標準方程;

(2)已知,經(jīng)過原點,且斜率為正數(shù)的直線與圓交于兩點.

(。┣笞C: 為定值;

(ⅱ)求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學數(shù)學老師分別用兩種不同教學方式對入學數(shù)學平均分和優(yōu)秀率都相同的甲、乙兩個高一新班(人數(shù)均為20人)進行教學(兩班的學生學習數(shù)學勤奮程度和自覺性一致),數(shù)學期終考試成績莖葉圖如下:

(1)學校規(guī)定:成績不低于75分的為優(yōu)秀,請?zhí)顚懴旅娴?/span>聯(lián)表,并判斷有多大把握認為“成績優(yōu)秀與教學方式有關”.

附:參考公式及數(shù)據(jù)

(2)從兩個班數(shù)學成績不低于90分的同學中隨機抽取3名,設為抽取成績不低于95分同學人數(shù),求的分布列和期望.

查看答案和解析>>

同步練習冊答案