【題目】已知函數(shù),其中,為自然對數(shù)的底數(shù).
(1)若函數(shù)既有極大值又有極小值,試求實數(shù)的取值范圍;
(2)設,且,是函數(shù)的兩個零點,求證:.
【答案】(1),,;(2)證明見解析.
【解析】
(1)求出,令,求出方程有兩個不相等的根所滿足的條件,即可求出結(jié)論;
(2)根據(jù)已知條件,求出單調(diào)區(qū)間,得到是極值點,不妨設,將問題轉(zhuǎn)化為證明,即證,結(jié)合單調(diào)性,只需證,再由,即證,構(gòu)造函數(shù),只需證明,即可得證結(jié)論.
(1),
既有極大值又有極小值,
有兩個不相等的實數(shù)根,即且.
由且,得,,;
(2)證明:由(1)知,當時,在上單調(diào)遞增,
在上單調(diào)遞減.又,
令,則.
,
在區(qū)間上單調(diào)遞增,
..
,是函數(shù)的兩個零點,
不妨設,,
,,且在上單調(diào)遞增,
,即.
由(1)可知,.
科目:高中數(shù)學 來源: 題型:
【題目】在中,,,AB的垂直平分線分別交AB,AC于D、E(圖一),沿DE將折起,使得平面平面BDEC(圖二).
(1)若F是AB的中點,求證:平面ADE.
(2)P是AC上任意一點,求證:平面平面PBE.
(3)P是AC上一點,且平面PBE,求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】據(jù)統(tǒng)計,僅在北京地區(qū)每天就有500萬單快遞等待派送,近5萬多名快遞員奔跑在一線,快遞網(wǎng)點人員流動性也較強,各快遞公司需要經(jīng)常招聘快遞員,保證業(yè)務的正常開展.下面是50天內(nèi)甲、乙兩家快遞公司的快遞員的每天送貨單數(shù)統(tǒng)計表:
送貨單數(shù) | 30 | 40 | 50 | 60 | |
天數(shù) | 甲 | 10 | 10 | 20 | 10 |
乙 | 5 | 15 | 25 | 5 |
已知這兩家快遞公司的快遞員的日工資方案分別為:甲公司規(guī)定底薪元,每單抽成元;乙公司規(guī)定底薪元,每日前單無抽成,超過單的部分每單抽成元.
(1)分別求甲、乙快遞公司的快遞員的日工資(單位:元)與送貨單數(shù)的函數(shù)關(guān)系式;
(2)若將頻率視為概率,回答下列問題:
①記甲快遞公司的快遞員的日工資為(單位:元),求的分布列和數(shù)學期望;
②小趙擬到甲、乙兩家快遞公司中的一家應聘快遞員的工作,如果僅從日收入的角度考慮,請你利用所學的統(tǒng)計學知識為他作出選擇,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知平面向量滿足,則以下說法正確的有( )個.
①;
②對于平面內(nèi)任一向量,有且只有一對實數(shù),使;
③若,且,則的范圍為;
④設,且在處取得最小值,當時,則;
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù),.
(1)若曲線與曲線在它們的交點處具有公共切線,求a,b的值;
(2)當時,若函數(shù)在區(qū)間內(nèi)恰有兩個零點,求a的取值范圍;
(3),求函數(shù)在區(qū)間上的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C:的右焦點坐標為,且點在C上.
(1)求橢圓的方程;
(2)過點的直線l與C交于M,N兩點,P為線段MN的中點,A為C的左頂點,求直線AP的斜率k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=xlnx﹣x+1,g(x)=ex﹣ax,a∈R.
(Ⅰ)求f(x)的最小值;
(Ⅱ)若g(x)≥1在R上恒成立,求a的值;
(Ⅲ)求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出下列四個命題:
①命題“,有”的否定為:“”;
②已知向量與的夾角是鈍角,則實數(shù)k的取值范圍是;
③函數(shù)的單調(diào)遞增區(qū)間是;
④“”是“直線和直線平行”的充分不必要條件;
其中錯誤命題的個數(shù)為( )
A.1B.2C.3D.4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com