【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間

(2)當(dāng)時(shí),求函數(shù)上的最小值

【答案】(1) 當(dāng)時(shí),函數(shù)的單調(diào)増區(qū)間為 ; 當(dāng)時(shí),函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為 ;(2) 當(dāng)時(shí),函數(shù)的最小值是;當(dāng)時(shí),函數(shù)的最小值是.

【解析】試題分析:(1首先對進(jìn)行求導(dǎo),然后分兩種情況討論,分別令求得 的范圍,可得函數(shù)增區(qū)間, 求得 的范圍,可得函數(shù)的減區(qū)間;(2)結(jié)合1的結(jié)論三個(gè)區(qū)間進(jìn)行討論,從而判斷其在區(qū)間[上單調(diào)性,根據(jù)單調(diào)性確定最小值.

試題解析:(1),

①當(dāng)時(shí), ,即函數(shù)的單調(diào)増區(qū)間為

②當(dāng)時(shí),令,可得

當(dāng)時(shí), ;

當(dāng)時(shí), ,故函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.

(2)①當(dāng),即時(shí),函數(shù)在區(qū)間[上是減函數(shù),所以的最小值是.

②當(dāng),即時(shí),函數(shù)在區(qū)間上是增函數(shù),所以的最小值是.

③當(dāng),即時(shí),函數(shù)上是增函數(shù),在上是減函數(shù).

,

所以當(dāng)時(shí),最小值是;

當(dāng)時(shí),最小值為.

綜上可知,

當(dāng)時(shí),函數(shù)的最小值是;

當(dāng)時(shí),函數(shù)的最小值是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司計(jì)劃購買2臺(tái)機(jī)器,該種機(jī)器使用三年后即被淘汰.機(jī)器有一易損零件,在購進(jìn)機(jī)器時(shí)可以額外購買這種零件作為備件,每個(gè)200元.在機(jī)器使用期間如果備件不足再購買,則每個(gè)500元.現(xiàn)需決策在購買機(jī)器時(shí)應(yīng)同時(shí)購買幾個(gè)易損零件,為此搜集并整理了100臺(tái)這種機(jī)器在三年使用期內(nèi)更換的易損零件數(shù)得下面柱狀圖:

以這100臺(tái)機(jī)器更換的易損零件數(shù)的頻率代替1臺(tái)機(jī)器更換的易損零件數(shù)發(fā)生的概率,X表示2臺(tái)機(jī)器三年內(nèi)共需更換的易損零件數(shù)n表示購買2臺(tái)機(jī)器的同時(shí)購買的易損零件數(shù).

(1)X的分布列;

(2)若要求P(Xn)0.5確定n的最小值;

(3)以購買易損零件所需費(fèi)用的期望值為決策依據(jù),n19n20之中選其一,應(yīng)選用哪個(gè)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來我國電子商務(wù)行業(yè)迎來發(fā)展的新機(jī)遇,2017年雙11全天交易額達(dá)到1682億元,為規(guī)范和評估該行業(yè)的情況,相關(guān)管理部門制定出針對電商的商品和服務(wù)的評價(jià)體系.現(xiàn)從評價(jià)系統(tǒng)中選出200次成功交易,并對其評價(jià)進(jìn)行評價(jià),對商品的好評率為0.6,對服務(wù)的好評率為0.75,其中對商品和服務(wù)都做出好評的交易為80次.

(1)完成關(guān)于商品和服務(wù)評價(jià)的列聯(lián)表,判斷能否在犯錯(cuò)誤的概率不超過0.001的前提下,認(rèn)為商品好評與服務(wù)好評有關(guān)?

(2)若將頻率視為概率,某人在該購物平臺(tái)上進(jìn)行的3次購物中,設(shè)對商品和服務(wù)全為好評的次數(shù)為隨機(jī)變量

①求對商品和服務(wù)全為好評的次數(shù)的分布列;

②求的數(shù)學(xué)期望和方差.

附:臨界值表:

的觀測值: (其中

關(guān)于商品和服務(wù)評價(jià)的列聯(lián)表:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ,其中 為自然對數(shù)的底數(shù)).

1)討論函數(shù)的單調(diào)性,并寫出相應(yīng)的單調(diào)區(qū)間;

2)設(shè),若函數(shù)對任意都成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,底面是直角梯形, ,且 ,側(cè)面底面是等邊三角形.

1)求證:

2)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的幾何體中,四邊形是等腰梯形, , 平面, ,

(1)求證: 平面;

(2)求直線與平面所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2017·黃岡質(zhì)檢)設(shè)等比數(shù)列{an}的各項(xiàng)均為正數(shù),公比為q,前n項(xiàng)和為Sn.若對任意的n∈N*,有S2n<3Sn,則q的取值范圍是(  )

A. (0,1] B. (0,2)

C. [1,2) D. (0, )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中, , 是線段的中點(diǎn),且 平面

(Ⅰ)求證:平面平面;

(Ⅱ)求證: 平面;

(Ⅲ)若, ,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱柱中, 平面,底面為梯形, , , ,點(diǎn) 分別為, 的中點(diǎn).

(Ⅰ)求證: 平面;

(Ⅱ)求二面角的余弦值;

(Ⅲ)在線段上是否存在點(diǎn),使與平面所成角的正弦值是,若存在,求的長;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案