【題目】2016915,天宮二號(hào)實(shí)驗(yàn)室發(fā)射成功借天宮二號(hào)東風(fēng),某廠(chǎng)推出品牌為玉兔的新產(chǎn)品生產(chǎn)玉兔的固定成本為20000元,每生產(chǎn)一件玉兔需要增加投入100根據(jù)初步測(cè)算,總收益單位:元滿(mǎn)足分段函數(shù),其中,玉兔的月產(chǎn)量單位:件,總收益=總成本+利潤(rùn)

I試將利潤(rùn)元表示為月產(chǎn)量的函數(shù);

II當(dāng)月產(chǎn)量為多少件時(shí)利潤(rùn)最大?最大利潤(rùn)是多少?

【答案】III當(dāng)時(shí),有最大利潤(rùn)

【解析】

試題分析:I依題設(shè),總成本為,利用總收益=總成本+利潤(rùn),求得利潤(rùn)的表達(dá)式為;II當(dāng)時(shí),利用配方法求的當(dāng)時(shí),;當(dāng)時(shí),是減函數(shù),最大值小于,所以當(dāng)時(shí),有最大利潤(rùn)

試題解析:

I依題設(shè),總成本為,

………………6分

II當(dāng)時(shí),,

則當(dāng)時(shí),

當(dāng)時(shí),是減函數(shù),

,

所以,當(dāng)時(shí),有最大利潤(rùn)25000元………………12分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知小矩形花壇ABCD中,AB=3m,AD=2m,現(xiàn)要將小矩形花壇建成大矩形花壇AMPN,使點(diǎn)B在A(yíng)M上,點(diǎn)D在A(yíng)N上,且對(duì)角線(xiàn)MN過(guò)點(diǎn)C.

1要使矩形AMPN的面積大于32m2,AN的長(zhǎng)應(yīng)在什么范圍內(nèi)?

2M,N是否存在這樣的位置,使矩形AMPN的面積最小?若存在,求出這個(gè)最小面積及相應(yīng)的AM。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若對(duì)采用如下標(biāo)準(zhǔn):

某市環(huán)保局從180天的市區(qū)監(jiān)測(cè)數(shù)據(jù)中,隨機(jī)抽取10天的數(shù)據(jù)作為樣本,檢測(cè)值如莖葉圖所示(十位為莖,個(gè)位為葉)。

)從這10天的數(shù)據(jù)中任取3天的數(shù)據(jù),記表示空氣質(zhì)量達(dá)到一級(jí)的天數(shù),求的分布列;

)以這10天的日均值來(lái)估計(jì)這180天的空氣質(zhì)量情況,其中大約有多少天的空氣質(zhì)量達(dá)到一級(jí)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某服裝廠(chǎng)生產(chǎn)一種服裝的成本為40元,出廠(chǎng)單價(jià)定為60元,該廠(chǎng)為鼓勵(lì)銷(xiāo)售商訂購(gòu),決定當(dāng)一次訂購(gòu)超過(guò)100件時(shí),每多訂購(gòu)1件,訂購(gòu)的全部服裝的出場(chǎng)單價(jià)就降低002元,根據(jù)市場(chǎng)調(diào)查,銷(xiāo)售商一次訂購(gòu)量不會(huì)超過(guò)600件

1設(shè)銷(xiāo)售一次訂購(gòu)件,服裝的實(shí)際出廠(chǎng)單價(jià)為元,寫(xiě)出函數(shù)的表達(dá)式;

2當(dāng)銷(xiāo)售商一次訂購(gòu)多少件服裝時(shí),該廠(chǎng)獲得的利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線(xiàn)C上任一點(diǎn)P到點(diǎn)F1,0的距離比它到直線(xiàn)的距離少1.

1求曲線(xiàn)C的方程;

2過(guò)點(diǎn)作兩條傾斜角互補(bǔ)的直線(xiàn)與曲線(xiàn)C分別交于點(diǎn)A、B,試問(wèn):直線(xiàn)AB的斜率是否為定值,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1寫(xiě)出函數(shù)的定義域和值域;

2證明函數(shù)為單調(diào)遞減函數(shù);

3試判斷函數(shù)的奇偶性,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)。

(1)討論的單調(diào)性;

(2)若的最大值,存在最小值,且,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,角A,B,C所對(duì)的邊分別是a,b,c,.

I)證明:;

II)若,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了判定兩個(gè)分類(lèi)變量X和Y是否有關(guān)系,應(yīng)用獨(dú)立性檢驗(yàn)法算得K2的觀(guān)測(cè)值為6,駙臨界值表如下:

P(K2≥k0

0.05

0.01

0.005

0.001

k0

3.841

6.635

7.879

10.828

則下列說(shuō)法正確的是(
A.有95%的把握認(rèn)為“X和Y有關(guān)系”
B.有99%的把握認(rèn)為“X和Y有關(guān)系”
C.有99.5%的把握認(rèn)為“X和Y有關(guān)系”
D.有99.9%的把握認(rèn)為“X和Y有關(guān)系”

查看答案和解析>>

同步練習(xí)冊(cè)答案