【題目】在梯形中,,為的中點(diǎn),線段與交于點(diǎn)(如圖1).將沿折起到的位置,使得二面角為直二面角(如圖2).
(1)求證:平面;
(2)線段上是否存在點(diǎn),使得與平面所成角的正弦值為?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)證明見(jiàn)解析(2)線段上存在點(diǎn),且
【解析】
(1)推導(dǎo)出,從而四邊形為平行四邊形,推導(dǎo)出,由此能證明平面;
(2)建立空間直角坐標(biāo)系,設(shè),利用向量法能求出線段上存在點(diǎn),且時(shí),使得CQ與平面BCD′所成角的正弦值為.
(1)證明:因?yàn)樵谔菪?/span>中,,為的中點(diǎn),
所以,
所以四邊形為平行四邊形,
因?yàn)榫段與交于點(diǎn),
所以為線段的中點(diǎn),
所以中,
因?yàn)?/span>平面,平面,
所以平面.
(2)解:平行四邊形中,,
所以四邊形是菱形,,垂足為,
所以,
因?yàn)?/span>平面,平面,
所以是二面角的平面角,
因?yàn)槎娼?/span>為直二面角,
所以,即.
可以如圖建立空間直角坐標(biāo)系,其中,
因?yàn)樵趫D1菱形中,,
所以,
所以,
所以,,
設(shè)為平面的法向量,
因?yàn)?/span>,所以,即,
取,得到,
所以;
線段上存在點(diǎn)使得與平面所成角的正弦值為,
設(shè),
因?yàn)?/span>,
所以,
因?yàn)?/span>,
所以,
因?yàn)?/span>,所以,
所以線段上存在點(diǎn),且,使得與平面所成角的正弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4—4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),圓的方程為.以原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系.
(Ⅰ)求直線及圓的極坐標(biāo)方程;
(Ⅱ)若直線與圓交于,兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知曲線C的參數(shù)方程為(α為參數(shù),直線l:y=kx(k>0),以O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.
(Ⅰ)求曲線C的極坐標(biāo)方程;
(Ⅱ)若直線l與曲線C交于A,B兩點(diǎn),求|OA||OB|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線的焦點(diǎn)為,,是拋物線上的兩個(gè)動(dòng)點(diǎn),且,過(guò),兩點(diǎn)分別作拋物線的切線,設(shè)其交點(diǎn)為.
(1)若直線與,軸分別交于點(diǎn),,且的面積為,求的值;
(2)記的面積為,求的最小值,并指出最小時(shí)對(duì)應(yīng)的點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求直線的普通方程和曲線的直角坐標(biāo)方程;
(2)若直線與曲線相交于兩點(diǎn),設(shè)點(diǎn),已知,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A,B,C,D是直角坐標(biāo)系中不同的四點(diǎn),若,,且,則下列說(shuō)法正確的是( ),
A.C可能是線段AB的中點(diǎn)
B.D可能是線段AB的中點(diǎn)
C.C、D可能同時(shí)在線段AB上
D.C、D不可能同時(shí)在線段AB的延長(zhǎng)線上
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知兩個(gè)平面相互垂直,下列命題
①一個(gè)平面內(nèi)已知直線必垂直于另一個(gè)平面內(nèi)的任意一條直線
②一個(gè)平面內(nèi)已知直線必垂直于另一個(gè)平面內(nèi)的無(wú)數(shù)條直線
③一個(gè)平面內(nèi)任意一條直線必垂直于另一個(gè)平面
④過(guò)一個(gè)平面內(nèi)任意一點(diǎn)作交線的垂線,則此垂線必垂直于另一個(gè)平面
其中正確命題個(gè)數(shù)是( )
A. B. C. 1D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】東方商店欲購(gòu)進(jìn)某種食品(保質(zhì)期一天),此商店每?jī)商熨?gòu)進(jìn)該食品一次(購(gòu)進(jìn)時(shí),該食品為剛生產(chǎn)的).根據(jù)市場(chǎng)調(diào)查,該食品每份進(jìn)價(jià)元,售價(jià)元,如果一天內(nèi)無(wú)法售出,則食品過(guò)期作廢,現(xiàn)統(tǒng)計(jì)該產(chǎn)品天的銷售量如下表:
(1)根據(jù)該產(chǎn)品天的銷售量統(tǒng)計(jì)表,求平均每天銷售多少份?
(2)視樣本頻率為概率,以一天內(nèi)該產(chǎn)品所獲得的利潤(rùn)的平均值為決策依據(jù),東方商店一次性購(gòu)進(jìn)或份,哪一種得到的利潤(rùn)更大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為,且橢圓上存在一點(diǎn),滿足.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過(guò)橢圓右焦點(diǎn)的直線與橢圓交于不同的兩點(diǎn),求的內(nèi)切圓的半徑的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com