【題目】數(shù)列的前項和為, 已知,且 , 三個數(shù)依次成等差數(shù)列.

(Ⅰ)求的值;

(Ⅱ)求數(shù)列的通項公式;

(Ⅲ)若數(shù)列滿足,設(shè)是其前項和,求證: .

【答案】I;(II;(Ⅲ)見解析.

【解析】試題分析:1先由和項與通項關(guān)系得項之間遞推關(guān)系式,再依次求,根據(jù)等差中項性質(zhì)列方程,解得的值;2將項之間遞推關(guān)系式進(jìn)行整理變形為,根據(jù)等比數(shù)列定義以及通項公式求得,即得數(shù)列的通項公式;3)先化簡得,再從第三項起放縮并利用裂項相消法求和得.

試題解析:(Ⅰ)由已知,得

當(dāng)時,

當(dāng)時,

又∵成等差數(shù)列,∴

將①、②代入③解得:

(Ⅱ)由得:

,

是以為首項,2為公比的等比數(shù)列

.

(Ⅲ)由得:

①當(dāng)時, ,

②當(dāng)時,

③當(dāng), 時, ,

.

綜上所述,當(dāng)時, .

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高三年級共有學(xué)生195人,其中女生105人,男生90人.現(xiàn)采用按性別分層抽樣的方法,從中抽取13人進(jìn)行問卷調(diào)查.設(shè)其中某項問題的選擇分別為“同意”、“不同意”兩種,且每人都做了一種選擇.下面表格中提供了被調(diào)查人答卷情況的部分信息.

同意

不同意

合計

女學(xué)生

4

男學(xué)生

2

(Ⅰ)完成上述統(tǒng)計表;

(Ⅱ)根據(jù)上表的數(shù)據(jù)估計高三年級學(xué)生該項問題選擇“同意”的人數(shù);

(Ⅲ) 從被抽取的女生中隨機(jī)選取2人進(jìn)行訪談,求選取的2名女生中至少有一人選擇“同意”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左,右焦點(diǎn)為,左,右頂點(diǎn)為,過點(diǎn)

直線分別交橢圓于點(diǎn).

(1)設(shè)動點(diǎn),滿足,求點(diǎn)的軌跡方程;

(2)當(dāng)時,求點(diǎn)的坐標(biāo);

(3)設(shè),求證:直線軸上的定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖在四面體ABCD中,若截面PQMN是正方形,則在下列命題中正確的有 .(填上所有正確命題的序號)
①AC⊥BD
②AC=BD
③AC∥截面PQMN
④異面直線PM與BD所成的角為45°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)討論的單調(diào)性;

(2)設(shè)函數(shù),當(dāng)時, 恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形中, ,分別過點(diǎn)作直線, 垂直平面,且, .

(Ⅰ)求證: 平面

(Ⅱ)求二面角的平面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某手機(jī)賣場對市民進(jìn)行國產(chǎn)手機(jī)認(rèn)可度的調(diào)查,隨機(jī)抽取名市民,按年齡(單位:歲)進(jìn)行統(tǒng)計和頻數(shù)分布表和頻率分布直線圖如下:

分組(歲)

頻數(shù)

合計

(1)求頻率分布表中、的值,并補(bǔ)全頻率分布直方圖;

(2)在抽取的這名市民中,按年齡進(jìn)行分層抽樣,抽取人參加國產(chǎn)手機(jī)用戶體驗(yàn)問卷調(diào)查,現(xiàn)從這人中隨機(jī)選取人各贈送精美禮品一份,設(shè)這名市民中年齡在內(nèi)的人數(shù),求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖 1,在直角梯形中, ,且.現(xiàn)以為一邊向形外作正方形,然后沿邊將正方形翻折,使平面與平面垂直, 的中點(diǎn),如圖 2.

(1)求證: 平面

(2)求證: 平面;

(3)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓經(jīng)過變換后得曲線.

(1)求的方程;

(2)若為曲線上兩點(diǎn), 為坐標(biāo)原點(diǎn),直線的斜率分別為,求直線被圓截得弦長的最大值及此時直線的方程.

查看答案和解析>>

同步練習(xí)冊答案