【題目】已知函數(shù)

(1)討論的單調(diào)性;

(2)設(shè)函數(shù),當(dāng)時(shí), 恒成立,求實(shí)數(shù)的取值范圍.

【答案】(1)見(jiàn)解析(2)

【解析】試題分析:(1)先求導(dǎo)數(shù),根據(jù)導(dǎo)函數(shù)是否變號(hào)進(jìn)行討論:若, , 上單調(diào)遞增;若 先減后增,(2)不等式恒成立問(wèn)題,一般利用變量分離轉(zhuǎn)化為對(duì)應(yīng)函數(shù)最值: 最小值,再利用導(dǎo)數(shù)研究函數(shù))單調(diào)性:先減后增,最后確定函數(shù)最值,即得實(shí)數(shù)的取值范圍.

試題解析:解:(Ⅰ)

①若, 上單調(diào)遞增;

②若,當(dāng)時(shí), , 上單調(diào)遞減;

當(dāng)時(shí), , 上單調(diào)遞增.

(Ⅱ)當(dāng)時(shí), 恒成立,即

恒成立.

),則

,則

當(dāng)時(shí), 單調(diào)遞減;

當(dāng)時(shí), 單調(diào)遞增.

時(shí), ,

所以,當(dāng)時(shí), ,即,所以單調(diào)遞減;

當(dāng)時(shí), ,即,所以單調(diào)遞增,

所以,所以

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市出租車(chē)的計(jì)價(jià)標(biāo)準(zhǔn)是:4km以內(nèi)(含4km)10元,超過(guò)4km且不超過(guò)18km的部分1.2元/km,超過(guò)18km的部分1.8元/km,不計(jì)等待時(shí)間的費(fèi)用.
(1)如果某人乘車(chē)行駛了10km,他要付多少車(chē)費(fèi)?
(2)試建立車(chē)費(fèi)y(元)與行車(chē)?yán)锍蘹(km)的函數(shù)關(guān)系式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知⊙C經(jīng)過(guò)點(diǎn)兩點(diǎn),且圓心C在直線上.

(1)求⊙C的方程;

(2)若直線與⊙C總有公共點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓),四點(diǎn), , , 中恰有三點(diǎn)在橢圓上.

1的方程;

2設(shè)直線不經(jīng)過(guò)點(diǎn)且與相交于兩點(diǎn),若直線與直線的斜率之和為證明: 過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中國(guó)古代數(shù)學(xué)家劉徽在《九章算術(shù)注》中,稱一個(gè)正方體內(nèi)兩個(gè)互相垂直的內(nèi)切圓柱所圍成的立體為“牟合方蓋”,如圖(1)(2),劉徽未能求得牟合方蓋的體積,直言“欲陋形措意,懼失正理”,不得不說(shuō)“敢不闕疑,以俟能言者”.約200年后,祖沖之的兒子祖暅提出“冪勢(shì)既同,則積不容異”,后世稱為祖暅原理,即:兩等高立體,若在每一等高處的截面積都相等,則兩立體體積相等.如圖(3)(4),祖暅利用八分之一正方體去掉八分之一牟合方蓋后的幾何體與長(zhǎng)寬高皆為八分之一正方體的邊長(zhǎng)的倒四棱錐“等冪等積”,計(jì)算出牟合方蓋的體積,據(jù)此可知,牟合方蓋的體積與其外切正方體的體積之比為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)列的前項(xiàng)和為, 已知,且, , 三個(gè)數(shù)依次成等差數(shù)列.

(Ⅰ)求的值;

(Ⅱ)求數(shù)列的通項(xiàng)公式;

(Ⅲ)若數(shù)列滿足,設(shè)是其前項(xiàng)和,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中, 底面,底面是直角梯形, , , 的中點(diǎn).

1)求證:平面平面;

2)若二面角的余弦值為,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)若任意,不等式恒成立,求實(shí)數(shù)的取值范圍;

(2)求證:對(duì)任意, ,都有成立;

(3)對(duì)于給定的正數(shù),有一個(gè)最大的正數(shù),使得整個(gè)區(qū)間上,不等式恒成立,求出的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,邊長(zhǎng)為2的正方形ABCD中,
(1)點(diǎn)E是AB的中點(diǎn),點(diǎn)F是BC的中點(diǎn),將△AED,△DCF分別沿DE,DF折起,使A,C兩點(diǎn)重合于點(diǎn)A′.求證:A′D⊥EF.
(2)當(dāng)BE=BF=BC時(shí),求三棱錐A′﹣EFD體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案