若隨機變量X的分布列如下表,則E(X)=(  )
X012345
P2x3x7x2x3xx
A.
1
18
B.
1
9
C.
9
20
D.
20
9
由題意和概率的性質(zhì),
得2x+3x+7x+2x+3x+x=1.
∴x=
1
18

則E(X)=0×
2
18
+1×
3
18
+2×
7
18
+3×
2
18
+4×
3
18
+5×
1
18
=
20
9

故選A.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)某公司“咨詢熱線”電話共有10路外線,經(jīng)長期統(tǒng)計發(fā)現(xiàn),在8點至10點這段時間內(nèi),英才苑外線電話同時打入情況如下表所示:
電話同時打入數(shù)ξ
0
1
2
3
4
5
6
7
8
9
10
概率P
0.13
0.35
0.27
0.14
0.08
0.02
0.01
0
0
0
0
  (1)若這段時間內(nèi),公司只安排了2位接線員(一個接線員一次只能接一個電話).
①求至少一路電話不能一次接通的概率;
②在一周五個工作日中,如果有三個工作日的這一時間內(nèi)至少一路電話不能一次接通,那么公司的形象將受到損害,現(xiàn)用至少一路電話一次不能接通的概率表示公司形象的“損害度”,求這種情況下公司形象的“損害度”;(2)求一周五個工作日的這一時間內(nèi),同時打入的電話數(shù)ξ的期望值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
四個大小相同的小球分別標(biāo)有數(shù)字把它們放在一個盒子中,從中任意摸出兩個小球,它們的標(biāo)號分別為、,記隨機變量.
(1)求隨機變量時的概率;
(2)求隨機變量的概率分布列及數(shù)學(xué)期望。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

A、B兩個試驗方案在某科學(xué)試驗中成功的概率相同,已知A、B兩個方案至少一個成功的概率為0.36,
(1)求兩個方案均獲成功的概率;
(2)設(shè)試驗成功的方案的個數(shù)為隨機變量ξ,求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

某種種子每粒發(fā)芽的概率是90%,現(xiàn)播種該種子1000粒,對于沒有發(fā)芽的種子,每粒需再補種2粒,補種的種子數(shù)記為X,則X的數(shù)學(xué)期望與方差分別是( 。
A.10090B.100180C.200180D.200360

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

隨機變量X的分布列如下表,且E(X)=1.1,則D(X)=______.
X01x
P
1
5
p
3
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知隨機變量ξ+η=8,若ξ~B(2,0.35),則E(η),D(η)分別是______,______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

甲、乙兩選手比賽,假設(shè)每局比賽甲勝的概率是
2
3
,乙勝的概率是
1
3
,不會出現(xiàn)平局.
(1)如果兩人賽3局,求甲恰好勝2局的概率和乙至少勝1局的概率;
(2)如果采用五局三勝制(若甲、乙任何一方先勝3局,則比賽結(jié)束,結(jié)果為先勝3局者獲勝),求甲獲勝的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知隨機變量ε的分布列為
  
ε
0
1
2
P



  
  且η=2ε+3,則Eη等于(   )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案