【題目】港珠澳大橋于2018年10月2刻日正式通車,它是中國境內(nèi)一座連接香港、珠海和澳門的橋隧工程,橋隧全長55千米.橋面為雙向六車道高速公路,大橋通行限速100km/h,現(xiàn)對大橋某路段上1000輛汽車的行駛速度進(jìn)行抽樣調(diào)查.畫出頻率分布直方圖(如圖),根據(jù)直方圖估計在此路段上汽車行駛速度在區(qū)間[85,90)的車輛數(shù)和行駛速度超過90km/h的頻率分別為( 。

A. 300,B. 300,C. 60,D. 60,

【答案】B

【解析】

由頻率分布直方圖求出在此路段上汽車行駛速度在區(qū)間的頻率即可得到車輛數(shù),同時利用頻率分布直方圖能求行駛速度超過的頻率.

由頻率分布直方圖得:

在此路段上汽車行駛速度在區(qū)間的頻率為,

∴在此路段上汽車行駛速度在區(qū)間的車輛數(shù)為:,

行駛速度超過的頻率為:

故選:B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】手機專賣店對某市市民進(jìn)行手機認(rèn)可度的調(diào)查,在已購買手機的1000名市民中,隨機抽取100名,按年齡(單位:歲)進(jìn)行統(tǒng)計的頻數(shù)分布表和頻率分布直方圖如下:

分組(歲)

頻數(shù)

5

35

10

合計

100

(1)求頻數(shù)分布表中,的值,并補全頻率分布直方圖;

(2)在抽取的這100名市民中,從年齡在、內(nèi)的市民中用分層樣的方法抽取5人參加手機宣傳活動,現(xiàn)從這5人中隨機選取2人各贈送一部手機,求這2人中恰有1人的年齡在內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列四個命題:

①如果平面外一條直線與平面內(nèi)一條直線平行,那么;

②過空間一定點有且只有一條直線與已知平面垂直;

③如果一條直線垂直于一個平面內(nèi)的無數(shù)條直線,那么這條直線與這個平面垂直;

④若兩個相交平面都垂直于第三個平面,則這兩個平面的交線垂直于第三個平面.

其中真命題的序號為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在梯形中,,,,四邊形是矩形,且平面平面.

(Ⅰ)求證:平面;

(Ⅱ)當(dāng)二面角的平面角的余弦值為,求這個六面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某網(wǎng)絡(luò)平臺從購買該平臺某課程的客戶中,隨機抽取了100位客戶的數(shù)據(jù),并將這100個數(shù)據(jù)按學(xué)時數(shù),客戶性別等進(jìn)行統(tǒng)計,整理得到如表:

學(xué)時數(shù)

男性

18

12

9

9

6

4

2

女性

2

4

8

2

7

13

4

(1)根據(jù)上表估計男性客戶購買該課程學(xué)時數(shù)的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表,結(jié)果保留小數(shù)點后兩位);

(2)從這100位客戶中,對購買該課程學(xué)時數(shù)在20以下的女性客戶按照分層抽樣的方式隨機抽取7人,再從這7人中隨機抽取2人,求這2人購買的學(xué)時數(shù)都不低于15的概率.

(3)將購買該課程達(dá)到25學(xué)時及以上者視為“十分愛好該課程者”,25學(xué)時以下者視,為“非十分愛好該課程者”.請根據(jù)已知條件完成以下列聯(lián)表,并判斷是否有99.9%的把握認(rèn)為“十分愛好該課程者”與性別有關(guān)?

非十分愛好該課程者

十分愛好該課程者

合計

男性

女性

合計

100

附:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線C關(guān)于軸對稱,頂點為坐標(biāo)原點,且經(jīng)過點

1)求拋物線C的標(biāo)準(zhǔn)方程;

2 過點的直線交拋物線于MN兩點.是否存在定直線,使得l上任意點P與點MQ,N所成直線的斜率,成等差數(shù)列.若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),曲線在點處的切線與直線垂直(其中為自然對數(shù)的底數(shù)).

1)求的解析式及單調(diào)遞減區(qū)間;

2)是否存在常數(shù),使得對于定義域內(nèi)的任意, 恒成立,若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

)求函數(shù)的單調(diào)區(qū)間;

)若對任意的,總存在,使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是某手機商城2018年華為、蘋果、三星三種品牌的手機各季度銷量的百分比堆積圖(如:第三季度華為銷量約占,三星銷量約占,蘋果銷量約占),根據(jù)該圖,以下結(jié)論中一定正確的是( )

A. 四個季度中,每季度三星和蘋果總銷量之和均不低于華為的銷量

B. 蘋果第二季度的銷量小于第三季度的銷量

C. 第一季度銷量最大的為三星,銷量最小的為蘋果

D. 華為的全年銷量最大

查看答案和解析>>

同步練習(xí)冊答案