【題目】如圖,在梯形中,,,,四邊形是矩形,且平面平面.
(Ⅰ)求證:平面;
(Ⅱ)當(dāng)二面角的平面角的余弦值為,求這個(gè)六面體的體積.
【答案】(1)見(jiàn)解析(2)
【解析】
(1)由,,,可得,,由面面垂直的性質(zhì)可得結(jié)果;(2)以為軸, 軸, 軸建立平面直角坐標(biāo)系,設(shè),利用向量垂直數(shù)量積為零列方程求出平面的一個(gè)法向量與平面的一個(gè)法向量,利用空間向量夾角余弦公式,列方程可求得,由棱錐的體積公式可得結(jié)果.
(Ⅰ)在梯形中,∵,,
∴,
∴,∵.
∴,
∴,∴.
∵平面平面,平面平面,∴平面.
(Ⅱ)在中,,∴.
分別以為軸,軸,軸建立平面直角坐標(biāo)系, 設(shè),則,,,
,,則,,易知平面的一個(gè)法向量為,設(shè)
∵平面的法向量為,∴即令,則,,
∴平面的法向量為,∵二面角的平面角的余弦值為,
∴,解得,即.
所以六面體的體積為:
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)求曲線在點(diǎn)處的切線方程;
(2)證明:當(dāng)時(shí),曲線恒在曲線的下方;
(3)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“微信運(yùn)動(dòng)”是一個(gè)類似計(jì)步數(shù)據(jù)庫(kù)的公眾賬號(hào),現(xiàn)從“微信運(yùn)動(dòng)”的個(gè)好友(男、女各人)中,記錄了他們某一天的走路步數(shù),并將數(shù)據(jù)整理如下表:
0-2000步 | 2001-5000步 | 5001-8000步 | 8001-10000步 | >10000步 | |
男(人數(shù)) | 2 | 4 | 6 | 10 | 8 |
女(人數(shù)) | 1 | 7 | 10 | 9 | 3 |
(1)若某人一天的走路步數(shù)超過(guò)步被系統(tǒng)評(píng)定為“積極型”,否則評(píng)定為“懈怠型",根據(jù)題意完成下面的列聯(lián)表,并據(jù)此判斷能否有%的把握認(rèn)為“評(píng)定類型"與“性別“有關(guān)?
積極型 | 懈怠型 | 總計(jì) | |
男(人數(shù)) | |||
女(人數(shù)) | |||
總計(jì) |
(2)現(xiàn)從被系統(tǒng)評(píng)定為“積極型”好友中,按男女性別分層抽樣,共抽出人,再?gòu)倪@人中,任意抽出人發(fā)一等獎(jiǎng),求發(fā)到一等獎(jiǎng)的中恰有一名女性的概率.
附:
0.10 | 0.05 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明每天上學(xué)都需要經(jīng)過(guò)一個(gè)有交通信號(hào)燈的十字路口.已知十字路口的交通信號(hào)燈綠燈亮的時(shí)間為40秒,黃燈5秒,紅燈45秒.如果小明每天到路口的時(shí)間是隨機(jī)的,則小明上學(xué)時(shí)到十字路口需要等待的時(shí)間不少于20秒的概率是
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), .
(1)當(dāng)時(shí),求不等式的解集;
(2)若不等式的解集包含[–1,1],求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是南北方向的一條公路,是北偏東方向的一條公路,某風(fēng)景區(qū)的一段邊界為曲線.為方便游客光,擬過(guò)曲線上的某點(diǎn)分別修建與公路,垂直的兩條道路,,且,的造價(jià)分別為5萬(wàn)元百米,40萬(wàn)元百米,建立如圖所示的直角坐標(biāo)系,則曲線符合函數(shù)模型,設(shè),修建兩條道路,的總造價(jià)為萬(wàn)元,題中所涉及的長(zhǎng)度單位均為百米.
(1)求解析式;
(2)當(dāng)為多少時(shí),總造價(jià)最低?并求出最低造價(jià).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn),圓,以動(dòng)點(diǎn)為圓心的圓經(jīng)過(guò)點(diǎn),且圓與圓內(nèi)切.
(Ⅰ)求動(dòng)點(diǎn)的軌跡的方程;
(Ⅱ)若直線過(guò)點(diǎn),且與曲線交于兩點(diǎn),則在軸上是否存在一點(diǎn),使得軸平分?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), .
(Ⅰ)若和在有相同的單調(diào)區(qū)間,求的取值范圍;
(Ⅱ)令(),若在定義域內(nèi)有兩個(gè)不同的極值點(diǎn).
(i)求的取值范圍;
(ii)設(shè)兩個(gè)極值點(diǎn)分別為, ,證明: .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com