【題目】已知為雙曲線的一個焦點,過的一條漸近線的垂線,垂足為點,的另一條漸近線交于點,若,則的離心率為(

A.2B.C.D.

【答案】C

【解析】

根據(jù)列方程,求得,由此求得,進而求得橢圓的離心率.

依題意,雙曲線的漸近線方程為.不妨設過的一條漸近線的垂線,垂足為點的另一條漸近線交于點,如下圖所示.

到漸近線的距離為.所以.由于

所以.,則

,即,解得(負根舍去),

,所以.C選項正確.

依題意,雙曲線的漸近線方程為.不妨設過的一條漸近線的垂線,垂足為點,的另一條漸近線交于點,如下圖所示.

到漸近線的距離為.所以.

由于,所以.所以.

根據(jù)雙曲線漸近線的對稱性可知:,所以,

此時,即不符合題意.

故選:C

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,曲線的參數(shù)方程為為參數(shù)).以坐標原點為極點,軸的正半軸為極軸,建立極坐標系,直線的極坐標方程為

(Ⅰ)求曲線的普通方程與直線的直角坐標方程;

(Ⅱ)若與平行的直線與曲線交于,兩點.且在軸的截距為整數(shù),的面積為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2021年起,我省將實行“3+1+2”高考模式,某中學為了解本校學生的選考情況,隨機調(diào)查了100位學生,其中選考化學或生物的學生共有70位,選考化學的學生共有40位,選考化學且選考生物的學生共有20位.若該校共有1500位學生,則該校選考生物的學生人數(shù)的估計值為(

A.300B.450C.600D.750

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了更好地支持中小型企業(yè)的發(fā)展,某市決定對部分企業(yè)的稅收進行適當?shù)臏p免,某機構調(diào)查了當?shù)氐闹行⌒推髽I(yè)年收入情況,并根據(jù)所得數(shù)據(jù)畫出了樣本的頻率分布直方圖,下面三個結論:

樣本數(shù)據(jù)落在區(qū)間的頻率為0.45;

如果規(guī)定年收入在500萬元以內(nèi)的企業(yè)才能享受減免稅政策,估計有55%的當?shù)刂行⌒推髽I(yè)能享受到減免稅政策;

樣本的中位數(shù)為480萬元.

其中正確結論的個數(shù)為( )

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】三國時代吳國數(shù)學家趙爽所注《周髀算經(jīng)》中給出了勾股定理的絕妙證明,下面是趙爽的弦圖及注文,弦圖是一個以勾股形之弦為邊的正方形,其面積稱為弦實,圖中包含四個全等的勾股形及一個小正方形,分別涂成紅(朱)色及黃色其面積稱為朱實,黃實,利朱用2×勾×股+(股-勾)2=4×朱實+黃實=弦實,化簡得勾2+股2=弦2,設勾股中勾股比為,若向弦圖內(nèi)隨機拋擲1000顆圖釘(大小忽略不計),則落在黃色圖形內(nèi)的圖釘數(shù)大約為( )

A.886B.500C.300D.134

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《普通高中數(shù)學課程標準(2017版)》提出了數(shù)學學科的六大核心素養(yǎng).為了比較甲、乙兩名高二學生的數(shù)學核心素養(yǎng)水平,現(xiàn)以六大素養(yǎng)為指標對二人進行了測驗,根據(jù)測驗結果繪制了雷達圖(如圖,每項指標值滿分為5分,分值高者為優(yōu)),則下面敘述正確的是(

A.甲的數(shù)據(jù)分析素養(yǎng)高于乙

B.甲的數(shù)學建模素養(yǎng)優(yōu)于數(shù)學抽象素養(yǎng)

C.乙的六大素養(yǎng)中邏輯推理最差

D.乙的六大素養(yǎng)整體平均水平優(yōu)于甲

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,是橢圓T.上的兩點,且A點位于第一象限.Ax軸的垂線,垂足為點C,點D滿足,延長T于點.

1)設直線,的斜率分別為,.

i)求證:;

ii)證明:是直角三角形;

2)求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學有初中學生1800人,高中學生1200人,為了解學生本學期課外閱讀時間,現(xiàn)采用分成抽樣的方法,從中抽取了100名學生,先統(tǒng)計了他們課外閱讀時間,然后按初中學生高中學生分為兩組,再將每組學生的閱讀時間(單位:小時)分為5組:[010),[1020),[20,30),[30,40),[4050],并分別加以統(tǒng)計,得到如圖所示的頻率分布直方圖.

1)寫出的值;試估計該校所有學生中,閱讀時間不小于30個小時的學生人數(shù);
2)從閱讀時間不足10個小時的樣本學生中隨機抽取3人,并用表示其中初中生的人數(shù),求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校高三年級有男生人,學號為,,;女生人,學號為,,.對高三學生進行問卷調(diào)查,按學號采用系統(tǒng)抽樣的方法,從這名學生中抽取人進行問卷調(diào)查(第一組采用簡單隨機抽樣,抽到的號碼為);再從這名學生中隨機抽取人進行數(shù)據(jù)分析,則這人中既有男生又有女生的概率是( )

A.B.C.D.

查看答案和解析>>

同步練習冊答案