【題目】設(shè)各項(xiàng)均為正數(shù)的數(shù)列的前n項(xiàng)和為,滿足,,公比大于1的等比數(shù)列滿足, .

1求證數(shù)列是等差數(shù)列,并求其通項(xiàng)公式

2求數(shù)列的前n項(xiàng)和;

3)在(2)的條件下,若對一切正整數(shù)n恒成立,求實(shí)數(shù)t的取值范圍.

【答案】(1)證明見解析, ;(2) ;(3) .

【解析】試題分析:

(1)結(jié)合函數(shù)的遞推公式可證得數(shù)列是首先為1,公差為2的等差數(shù)列,其通項(xiàng)公式為;

(2)錯位相減可得數(shù)列的前n項(xiàng)和為;

(3)由題意可得數(shù)列單調(diào)遞減,據(jù)此得到關(guān)于實(shí)數(shù)t的不等式,求解不等式可得實(shí)數(shù)t的取值范圍是.

試題解析:

(1) 當(dāng)時(shí),,

,所以,.

因?yàn)楫?dāng)時(shí),是公差的等差數(shù)列,

,

是首項(xiàng),公差的等差數(shù)列,

所以數(shù)列的通項(xiàng)公式為.

(2)由題意得 ;

則前n項(xiàng)和;

;

相減可得

;

化簡可得前n項(xiàng)和;

3對一切正整數(shù)n恒成立,

,

可得數(shù)列單調(diào)遞減,即有最大值為,

解得 .

即實(shí)數(shù)t的取值范圍為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市為了制定合理的節(jié)水方案,對居民用水情況進(jìn)行了調(diào)查,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5),[0.5,1),[4,4.5]分成9組,制成了如圖所示的頻率分布直方圖.

(I)求直方圖中的a值;

(II)設(shè)該市有30萬居民,估計(jì)全市居民中月均用水量不低于3噸的人數(shù),說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定圓,定直線,過的一條動直線與直線相交于,與圓相交于,兩點(diǎn),

1當(dāng)垂直時(shí),求出點(diǎn)的坐標(biāo),并證明:過圓心;

2當(dāng)時(shí),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),( 為實(shí)數(shù)),

1)討論函數(shù)的單調(diào)區(qū)間;

2)求函數(shù)的極值;

3)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),曲線在點(diǎn)處的切線與直線垂直.

注:為自然對數(shù)的底數(shù).

1)若函數(shù)在區(qū)間上存在極值,求實(shí)數(shù)的取值范圍;

2)求證:當(dāng)時(shí),.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)區(qū)間;

(2)若, 恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解防震知識在中學(xué)生中的普及情況,某地震部門命制了一份滿分為10分的問卷到紅星中學(xué)做問卷調(diào)查.該校甲、乙兩個(gè)班各被隨機(jī)抽取名學(xué)生接受問卷調(diào)查,甲班名學(xué)生得分為5,8,9,9,9乙班5名學(xué)生得分為6,7,8,9,10.

(Ⅰ)請你估計(jì)甲乙兩個(gè)班中,哪個(gè)班的問卷得分更穩(wěn)定一些;

(Ⅱ)如果把乙班5名學(xué)生的得分看成一個(gè)總體,并用簡單隨機(jī)抽樣方法從中抽取樣本容量為2的樣本,求樣本平均數(shù)與總體平均數(shù)之差的絕對值不小于1的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱中,點(diǎn)分別在棱上(均異于端點(diǎn)),且.

(1)求證:平面平面;

(2)求證: 平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓的離心率,過點(diǎn)的直線與原點(diǎn)的距離為,是橢圓上任一點(diǎn),從原點(diǎn)向圓作兩條切線,分別交橢圓于點(diǎn),.

(Ⅰ)求橢圓的方程;

(Ⅱ)若記直線的斜率分別為,,試求的值.

查看答案和解析>>

同步練習(xí)冊答案