精英家教網 > 高中數學 > 題目詳情

【題目】已知函數的導函數.

(1)求函數的單調區(qū)間;

(2)若函數上存在最大值0,求函數上的最大值;

(3)求證:當時,.

【答案】(1)見解析(2) (3)見解析

【解析】分析:(1)對a分類討論,求函數的單調區(qū)間.(2)根據函數上存在最大值0轉化得到a=1,再求函數上的最大值.(3)先利用第2問轉化得到,再證明≤0.

詳解:(1)由題意可知, ,則,

時,,∴上單調遞增;

時,解得時,時,

上單調遞增,在上單調遞減

綜上,當時,的單調遞增區(qū)間為,無遞減區(qū)間;當時,的單調遞增區(qū)間為,單調遞減區(qū)間為.

(2)由(1)可知,處取得最大值,

,即,

觀察可得當時,方程成立

,

時,,當時,

上單調遞減,在單調遞增,

,

∴當且僅當時,

所以,由題意可知上單調遞減,

所以處取得最大值

(3)由(2)可知,若,當時,,即,

可得,

,即證

,

,又,∴

,上單調遞減,,

,當且僅當時等號成立

所以.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】給出下列五個結論,其中正確的結論是(

A.函數的最大值為

B.已知函數)在上是減函數則a的取值范圍是

C.在同一直角坐標系中,函數的圖象關于y軸對稱

D.在同一直角坐標系中,函數的圖象關于直線對稱

E.已知定義在R上的奇函數內有1010個零點,則函數的零點個數為2021

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,已知直線lxy2=0,拋物線Cy2=2pxp0.

1)若直線l過拋物線C的焦點,求拋物線C的方程;

2)已知拋物線C上存在關于直線l對稱的相異兩點PQ.

求證:線段PQ的中點坐標為;

p的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設雙曲線的左、右焦點分別為. 若點P在雙曲線上,且為銳角三角形,則|PF1|+|PF2|的取值范圍是

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,過的直線與橢圓交于的兩點,且軸,若為橢圓上異于的動點且,則該橢圓的離心率為___.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,,.

1)若函數在定義域上為單調遞增函數,求實數的取值范圍;

2)設函數,,若存在使成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

1時,求上的單調區(qū)間;

2, 均恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,三棱柱,側面 側面,,,,為棱的中點,的中點.

(1) 求證:平面;

(2) ,求三棱柱的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知動點到定點的距離比到定直線的距離小1.

(Ⅰ)求點的軌跡的方程;

(Ⅱ)過點任意作互相垂直的兩條直線,分別交曲線于點.設線段, 的中點分別為,求證:直線恒過一個定點;

(Ⅲ)在(Ⅱ)的條件下,求面積的最小值.

查看答案和解析>>

同步練習冊答案