【題目】已知橢圓的左、右焦點(diǎn)分別為,過的直線與橢圓交于的兩點(diǎn),且軸,若為橢圓上異于的動(dòng)點(diǎn)且,則該橢圓的離心率為___.

【答案】

【解析】

根據(jù)題意,假設(shè)A在第一象限,則,過B作BCx軸于C,分析易得△AF1F2~△BF1C,分析可得B的坐標(biāo),將其代入橢圓的方程,變形可得25c2+b2=9a2,結(jié)合橢圓的幾何性質(zhì)可得3c2=a2,又由橢圓的離心率公式計(jì)算可得答案.

根據(jù)題意,因?yàn)锳F2⊥x軸且F2(c,0),假設(shè)A在第一象限,則,

過B作BCx軸于C,則易知△AF1F2~△BF1C,

|AF1|=3|BF1|,所以|AF2|=3|BC|,|F1F2|=3|CF1|,

所以,代入橢圓方程得,即25c2+b2=9a2

又b2=a2﹣c2,所以3c2=a2,

所以橢圓離心率為

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),對(duì)稱軸為,且.

(1)求的值;

(2)求函數(shù)上的最值.

(3)若函數(shù),且方程有三個(gè)解,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列敘述中正確的個(gè)數(shù)是( )

①將一組樣本數(shù)據(jù)中的每個(gè)數(shù)據(jù)都加上同一個(gè)常數(shù)后方差不變;

②命題,,命題,,為真命題;

③“”是的必要而不充分條件;

將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度得到函數(shù)的圖象.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=-ln(x+m).

(1)設(shè)x=0f(x)的極值點(diǎn),求m,并討論f(x)的單調(diào)性;

2)當(dāng)m≤2時(shí),證明f(x)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲同學(xué)家到乙同學(xué)家的途中有一座公園,甲同學(xué)家到公園的距離與乙同學(xué)家到公園的距離都是2km.如圖所示表示甲同學(xué)從家出發(fā)到乙同學(xué)家經(jīng)過的路程ykm)與時(shí)間xmin)的關(guān)系,下列結(jié)論正確的是(

A.甲同學(xué)從家出發(fā)到乙同學(xué)家走了60min

B.甲從家到公園的時(shí)間是30min

C.甲從家到公園的速度比從公園到乙同學(xué)家的速度快

D.當(dāng)時(shí),yx的關(guān)系式為

E.當(dāng)時(shí),yx的關(guān)系式為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),的導(dǎo)函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若函數(shù)上存在最大值0,求函數(shù)上的最大值;

(3)求證:當(dāng)時(shí),.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)當(dāng)時(shí),求該函數(shù)的值域;

(2)求不等式的解集;

(3)若對(duì)于恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某球員是當(dāng)今國內(nèi)最好的球員之一,在賽季常規(guī)賽中,場(chǎng)均得分達(dá)分。分球和分球命中率分別為,罰球命中率為.一場(chǎng)比賽分為一、二、三、四節(jié),在某場(chǎng)比賽中該球員每節(jié)出手投分的次數(shù)分別是,,,每節(jié)出手投三分的次數(shù)分別是,,,,罰球次數(shù)分別是,,(罰球一次命中記分)。

(1)估計(jì)該球員在這場(chǎng)比賽中的得分(精確到整數(shù));

(2)求該球員這場(chǎng)比賽四節(jié)都能投中三分球的概率;

(3)設(shè)該球員這場(chǎng)比賽中最后一節(jié)的得分為,求的分布列和數(shù)學(xué)期望。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有一種新型的洗衣液,去污速度特別快,已知每投放個(gè)(,且)單位的洗衣液在一定量水的洗衣機(jī)中, 它在水中釋放的濃度(/)隨著時(shí)間(分鐘)變化的函數(shù)關(guān)系式近似為,其中.若多次投放,則某一時(shí)刻水中的洗衣液濃度為每次投放的洗衣液在相應(yīng)時(shí)刻所釋放的濃度之和.根據(jù)經(jīng)驗(yàn),當(dāng)水中洗衣液濃度不低于/升時(shí),它才能起到有效去污的作用.

(1)若只投放一次個(gè)單位的洗衣液,當(dāng)兩分鐘時(shí)水中洗衣液的濃度為/升,求的值;

(2)若只投放一次個(gè)單位的洗衣液,則有效去污時(shí)間可達(dá)幾分鐘?

(3)若第一次投放個(gè)單位的洗衣液,分鐘后再投放個(gè)單位的洗衣液,則在第分鐘時(shí)洗衣液是否還能起到有效去污的作用?請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案