【題目】如圖,在平面直角坐標系xOy中,已知直線lxy2=0,拋物線Cy2=2pxp0.

1)若直線l過拋物線C的焦點,求拋物線C的方程;

2)已知拋物線C上存在關(guān)于直線l對稱的相異兩點PQ.

求證:線段PQ的中點坐標為;

p的取值范圍.

【答案】1;(2證明見解析;②.

【解析】

1)先確定拋物線焦點,再將點代入直線方程;(2利用拋物線點之間關(guān)系進行化簡,結(jié)合中點坐標公式求證;②利用直線與拋物線位置關(guān)系確定數(shù)量關(guān)系:,解出p的取值范圍.

1)拋物線的焦點為

由點在直線上,得,即

所以拋物線C的方程為

2)設(shè),線段PQ的中點

因為點PQ關(guān)于直線對稱,所以直線垂直平分線段PQ,

于是直線PQ的斜率為,則可設(shè)其方程為

消去

因為P Q是拋物線C上的相異兩點,所以

從而,化簡得.

方程(*)的兩根為,從而

因為在直線上,所以

因此,線段PQ的中點坐標為

因為在直線

所以,即

,于是,所以

因此的取值范圍為

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)為偶函數(shù).

(Ⅰ)求的值;

(Ⅱ)若,求的值;

(Ⅲ)在(Ⅱ)的條件下,若函數(shù)上只有一個零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的圖象經(jīng)過點,且在點處的切線方程為.

(1)求函數(shù)的解析式;

(2)求函數(shù)的單調(diào)區(qū)間

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】高中生在被問及“家,朋友聚集的地方,個人空間”三個場所中“感到最幸福的場所在哪里?”這個問題時,從洛陽的高中生中,隨機抽取了55人,從上海的高中生中隨機抽取了45人進行答題.洛陽高中生答題情況是選擇家的占、選擇朋友聚集的地方的占、選擇個人空間的占.上海高中生答題情況是:選擇朋友聚集的地方的占、選擇家的占、選擇個人空間的占.

(1)請根據(jù)以上調(diào)查結(jié)果將下面列聯(lián)表補充完整并判斷能否有的把握認為“戀家在家里感到最幸福”與城市有關(guān)

在家里最幸福

在其它場所最幸福

合計

洛陽高中生

上海高中生

合計

(2) 從被調(diào)查的不“戀家”的上海學生中,用分層抽樣的方法選出4人接受進一步調(diào)查從被選出的4 人中隨機抽取2人到洛陽交流學習,求這2人中含有在“個人空間”感到幸福的學生的概率.

,其中d.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列敘述中正確的個數(shù)是( )

①將一組樣本數(shù)據(jù)中的每個數(shù)據(jù)都加上同一個常數(shù)后方差不變;

②命題,,命題,,為真命題;

③“”是的必要而不充分條件

將函數(shù)的圖象向左平移個單位長度得到函數(shù)的圖象.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2018年上海國際青少年足球邀請賽將在6月下旬舉行.一體育機構(gòu)對某高中一年級750名男生,600名女生采用分層抽樣的方法抽取45名學生對足球進行興趣調(diào)查,統(tǒng)計數(shù)據(jù)如下所示:

1:男生

結(jié)果

有興趣

無所謂

無興趣

人數(shù)

2

3

2:女生

結(jié)果

有興趣

無所謂

無興趣

人數(shù)

12

2

(1),的值;

(2)運用獨立性檢驗的思想方法分析:請你填寫列聯(lián)表,并判斷是否在犯錯誤的概率不超過的前提下認為非“有興趣”與性別有關(guān)系?

男生

女生

總計

有興趣

非有興趣

總計

(3)45人所有無興趣的學生中隨機選取2人,求所選2人中至少有一個女生的概率.

附:,.

0.10

0.05

0.01

2.706

3.841

6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=-ln(x+m).

(1)設(shè)x=0f(x)的極值點,求m,并討論f(x)的單調(diào)性;

2)當m≤2時,證明f(x)>0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),的導(dǎo)函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若函數(shù)上存在最大值0,求函數(shù)上的最大值;

(3)求證:當時,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某種海洋生物身體的長度(單位:米)與生長年限(單位:年)滿足如下的函數(shù)關(guān)系:.(設(shè)該生物出生時

1)需經(jīng)過多少時間,該生物的身長超過8米;

2)設(shè)出生后第年,該生物長得最快,求的值.

查看答案和解析>>

同步練習冊答案