【題目】△ABC中,a、b、c分別是角A、B、C的對邊,向量=(2sinB,2-cos2B),=(2sin2( ),-1),.
(1)求角B的大小;
(2)若a= ,b=1,求c的值.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,三棱柱中,側面,已知,,,點是棱的中點.
(1)求證:平面;
(2)求二面角的余弦值;
(3)在棱上是否存在一點,使得與平面所成角的正弦值為,若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,底面為直角梯形,,,為的中點,,平面平面.
(1)求證:平面平面;
(2)記點到平面的距離為,點到平面的距離為,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù).
(1)當時,求函數(shù)的單調區(qū)間;
(2)若關于的不等式對任意的恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,且過點.
(1)求的方程;
(2)是否存在直線與相交于兩點,且滿足:①與(為坐標原點)的斜率之和為2;②直線與圓相切,若存在,求出的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面多邊形中,四邊形是邊長為2的正方形,四邊形為等腰梯形,為的中點, ,現(xiàn)將梯形沿折疊,使平面平面.
(1)求證:面;
(2)求與平面成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠為提高生產(chǎn)效率,開展技術創(chuàng)新活動,提出了完成某項生產(chǎn)任務的兩種新的生產(chǎn)方式.為比較兩種生產(chǎn)方式的效率,選取名工人,將他們隨機分成兩組,每組人.第一組工人用第一種生產(chǎn)方式,第二組工人用第二種生產(chǎn)方式.根據(jù)工人完成生產(chǎn)任務的工作時間(單位:)繪制了如圖所示的莖葉圖(莖為十位數(shù),葉為個位數(shù)):
(1)根據(jù)莖葉圖,估計兩種生產(chǎn)方式完成任務所需時間至少分鐘的概率,并對比兩種生產(chǎn)方式所求概率,判斷哪種生產(chǎn)方式的效率更高?
(2)將完成生產(chǎn)任務所需時間超過和不超過的工人數(shù)填入下面的列聯(lián)表:
超過 | 不超過 | |
第一種生產(chǎn)方式 | ||
第二種生產(chǎn)方式 |
(3)根據(jù)(2)中的列聯(lián)表,能否有的把握認為兩種生產(chǎn)方式的效率有差異?
附:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在數(shù)列中,若且則稱為“數(shù)列”.設為“數(shù)列”,記的前項和為
(1)若,求的值;
(2)若,求的值;
(3)證明:中總有一項為或.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,直線l的參數(shù)方程為 (t為參數(shù)),若以O為極點,x軸的正半軸為極軸且取相同的單位長度建立極坐標系,曲線C的極坐標方程為.
(1)求曲線C的直角坐標方程及直線l的普通方程;
(2)將所得曲線C向右平移1個單位長度,再將曲線C上的所有點的橫坐標變?yōu)樵瓉淼?/span>2倍,得到曲線,求曲線上的點到直線l的距離的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com