點(diǎn)P在直線x+y-4=0上,O為原點(diǎn),則|OP|的最小值是( 。
A、2
B、
6
C、2
2
D、
10
考點(diǎn):點(diǎn)到直線的距離公式
專題:直線與圓
分析:直接由點(diǎn)到直線的距離公式求|OP|的最小值.
解答: 解:由點(diǎn)到直線的距離公式得:|OP|的最小值=
|-4|
12+12
=2
2

故選:C.
點(diǎn)評(píng):本題考查了得到直線的距離公式,體現(xiàn)了數(shù)學(xué)轉(zhuǎn)化思想方法,是基礎(chǔ)的計(jì)算題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,AB=4,AC=3,M,N分別是AB,AC的中點(diǎn).
(Ⅰ)若A=60°,用
AB
,
AC
表示
BN
CM
,并求
BN
CM
的值;
(Ⅱ)若
BN
CM
,求cos(A+
π
3
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖:AD=2,AB=4的長(zhǎng)方形ABCD所在平面與正△PAD所在平面互相垂直,M,Q分別為PC,AD的中點(diǎn).
(1)求證:PA∥平面MBD;
(2)試問(wèn):在線段AB上是否存在一點(diǎn)N,使得平面PCN⊥平面PQB?若存在,試指出點(diǎn)N的位置,并證明你的結(jié)論;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列函數(shù)(1)y=x2+|x|+2,x≤0(2)y=t2-t+2,t≤0(3)y=x2-|x|+2,x≥0(4)y=(
x
4+
x2
+2,其中與函數(shù)y=x2-x+2,x≤0相等的有( 。
A、(1)
B、(1)(2)
C、(1)(2)(4)
D、(1)(3)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

甲、乙兩個(gè)籃球運(yùn)動(dòng)員互不影響地在同一位置投球,命中率分別為
1
2
與p,且乙投球2次均未命中的概率為
1
16

(Ⅰ)求乙投球的命中率p;
(Ⅱ)求甲投球2次,至少命中1次的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等比數(shù)列{an}的首項(xiàng)為a1,公比為q,且有
lim
n→∞
(
a1
1+q
-qn)=
1
2
,則首項(xiàng)a1的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的內(nèi)角A,B,C所對(duì)應(yīng)的邊分別為a,b,c,且A,B,C成等差數(shù)列,a,b,c也成等差數(shù)列,判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x4=81,那么x等于( 。
A、3B、-3
C、-3或3D、不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的奇函數(shù)f(x),且為減函數(shù),又知f(1-a)+f(1-a2)<0,則a的取值范圍為( 。
A、(-2,1)
B、(-∞,-2)∪(1,+∞)
C、(0,1)
D、(0,2)

查看答案和解析>>

同步練習(xí)冊(cè)答案