【題目】從2016年到2019年的某城市方便面銷量情況如圖所示:
年份 | 2016 | 2017 | 2018 | 2019 |
時間代號 | 1 | 2 | 3 | 4 |
年銷量(萬包) | 462 | 444 | 404 | 385 |
(1)根據(jù)上表,求關(guān)于的線性回歸方程.用所求回歸方程預(yù)測2020年()方便面在該城市的年銷量;
(2)某媒體記者隨機對身邊的10位朋友做了一次調(diào)查,其中3位受訪者認為方便面是健康食品.現(xiàn)從這10人中抽取3人進行深度訪談,記表示隨機抽取的3人認為方便面是健康食品的人數(shù),求隨機變量的分布列及數(shù)學(xué)期望.
參考公式:回歸方程:,其中,.
參考數(shù)據(jù):.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙三家企業(yè)產(chǎn)品的成本分別為10000,12000,15000,其成本構(gòu)成如下圖所示,則關(guān)于這三家企業(yè)下列說法錯誤的是( )
A.成本最大的企業(yè)是丙企業(yè)B.費用支出最高的企業(yè)是丙企業(yè)
C.支付工資最少的企業(yè)是乙企業(yè)D.材料成本最高的企業(yè)是丙企業(yè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】小王投資1萬元2萬元、3萬元獲得的收益分別是4萬元、9萬元、16萬元為了預(yù)測投資資金x(萬元)與收益y萬元)之間的關(guān)系,小王選擇了甲模型和乙模型.
(1)根據(jù)小王選擇的甲、乙兩個模型,求實數(shù)a,b,c,p,q,r的值
(2)若小王投資4萬元,獲得收益是25.2萬元,請問選擇哪個模型較好?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求函數(shù)的極值;
(2)討論函數(shù)的單調(diào)性;
(3)若對,恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】物聯(lián)網(wǎng)興起、發(fā)展、完善極大的方便了市民生活需求.某市統(tǒng)計局隨機地調(diào)查了該市某社區(qū)的100名市民網(wǎng)上購菜狀況,其數(shù)據(jù)如下:
每周網(wǎng)上買菜次數(shù) | 1次 | 2次 | 3次 | 4次 | 5次 | 6次及以上 | 總計 |
男 | 10 | 8 | 7 | 3 | 2 | 15 | 45 |
女 | 5 | 4 | 6 | 4 | 6 | 30 | 55 |
總計 | 15 | 12 | 13 | 7 | 8 | 45 | 100 |
(1)把每周網(wǎng)上買菜次數(shù)超過3次的用戶稱為“網(wǎng)上買菜熱愛者”,能否在犯錯誤概率不超過0.005的前提下,認為是否為“網(wǎng)上買菜熱愛者”與性別有關(guān)?
(2)把每周使用移動支付6次及6次以上的用戶稱為“網(wǎng)上買菜達人”,視頻率為概率,在我市所有“網(wǎng)上買菜達人”中,隨機抽取4名用戶求既有男“網(wǎng)上買菜達人”又有女“網(wǎng)上買菜達人”的概率.
附公式及表如下:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.076 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某社區(qū)名居民參加年國慶活動,他們的年齡在歲至歲之間,將年齡按、、、、分組,得到的頻率分布直方圖如圖所示.
(1)求的值,并求該社區(qū)參加年國慶活動的居民的平均年齡(每個分組取中間值作代表);
(2)現(xiàn)從年齡在、的人員中按分層抽樣的方法抽取人,再從這人中隨機抽取人進行座談,用表示參與座談的居民的年齡在的人數(shù),求的分布列和數(shù)學(xué)期望;
(3)若用樣本的頻率代替概率,用隨機抽樣的方法從該地歲至歲之間的市民中抽取名進行調(diào)查,其中有名市民的年齡在的概率為,當(dāng)最大時,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】西北某省會城市計劃新修一座城市運動公園,設(shè)計平面如圖所示:其為五邊形,其中三角形區(qū)域為球類活動場所;四邊形為文藝活動場所,,為運動小道(不考慮寬度),,千米.
(1)求小道的長度;
(2)求球類活動場所的面積最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體中,四邊形是邊長為的菱形,,與交于點,平面平面,,,.
(1)求證:平面;
(2)若為等邊三角形,點為的中點,求二面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com