【題目】如圖,四棱錐中,底面是矩形,面底面,且是邊長(zhǎng)為的等邊三角形, 上,且.

(1)求證: 的中點(diǎn);

(2)在上是否存在點(diǎn),使二面角為直角?若存在,求出的值;若不存在,說(shuō)明理由.

【答案】(1) 見(jiàn)解析;(2) .

【解析】試題分析:(1)連可得中點(diǎn),再根據(jù)可得進(jìn)而根據(jù)中位線定理可得結(jié)果;(2)取中點(diǎn),由(1)知兩兩垂直. 以為原點(diǎn), 所在直線分別為軸, 軸, 軸建立空間直角坐標(biāo)系,求出面的一個(gè)法向量,用表示面的一個(gè)法向量,由可得結(jié)果.

試題解析:(1)證明:連,連是矩形, 中點(diǎn).又,且是面與面的交線, 的中點(diǎn).

(2)取中點(diǎn),由(1)知兩兩垂直. 以為原點(diǎn), 所在直線分別為軸,

軸, 軸建立空間直角坐標(biāo)系(如圖),則各點(diǎn)坐標(biāo)為.

設(shè)存在滿(mǎn)足要求,且,則由得: ,面的一個(gè)法向量為,面的一個(gè)法向量為,由,得,解得,故存在,使二面角為直角,此時(shí).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知.

(1)當(dāng)時(shí),若函數(shù)存在與直線平行的切線,求實(shí)數(shù)的取值范圍;

(2)當(dāng)時(shí),,若的最小值是,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為調(diào)查人們?cè)谫?gòu)物時(shí)的支付習(xí)慣,某超市對(duì)隨機(jī)抽取的600名顧客的支付方式進(jìn)行了統(tǒng)計(jì),數(shù)據(jù)如下表所示:

支付方式

微信

支付寶

購(gòu)物卡

現(xiàn)金

人數(shù)

200

150

150

100

現(xiàn)有甲、乙、丙三人將進(jìn)入該超市購(gòu)物,各人支付方式相互獨(dú)立,假設(shè)以頻率近似代替概率.

(1)求三人中使用微信支付的人數(shù)多于現(xiàn)金支付人數(shù)的概率;

(2)記為三人中使用支付寶支付的人數(shù),求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)求函數(shù)的極值

(2)定義:若函數(shù)在區(qū)間 上的取值范圍為,則稱(chēng)區(qū)間為函數(shù)的“美麗區(qū)間”.試問(wèn)函數(shù)上是否存在“美麗區(qū)間”?若存在,求出所有符合條件的“美麗區(qū)間”;若不存在,請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,PA⊥底面ABCD,AD||BC,AD⊥CD,BC=2,AD=CD=1,MPB的中點(diǎn).

(1)求證:AM||平面PCD;

(2)求證:平面ACM⊥平面PAB;

(3)若PC與平面ACM所成角為30°,PA的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】被嘉定著名學(xué)者錢(qián)大昕贊譽(yù)為“國(guó)朝算學(xué)第一”的清朝數(shù)學(xué)家梅文鼎曾創(chuàng)造出一類(lèi)“方燈體”,“燈者立方去其八角也”,如圖所示,在棱長(zhǎng)為的正方體中,點(diǎn)為棱上的四等分點(diǎn).

1)求該方燈體的體積;

2)求直線的所成角;

3)求直線和平面的所成角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】小趙和小王約定在早上之間到某公交站搭乘公交車(chē)去上學(xué),已知在這段時(shí)間內(nèi),共有班公交車(chē)到達(dá)該站,到站的時(shí)間分別為,,如果他們約定見(jiàn)車(chē)就搭乘,則小趙和小王恰好能搭乘同一班公交車(chē)去上學(xué)的概率為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】.口袋中有質(zhì)地、大小完全相同的5個(gè)球,編號(hào)分別為1,23,45,甲、乙兩人玩一種游戲:甲先摸出一個(gè)球,記下編號(hào),放回后乙再摸一個(gè)球,記下編號(hào),如果兩個(gè)編號(hào)的和為偶數(shù)算甲贏,否則算乙贏.

)求甲贏且編號(hào)的和為6的事件發(fā)生的概率;

)這種游戲規(guī)則公平嗎?試說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) 的圖象過(guò)點(diǎn)。

(1)求的值并求函數(shù)的值域;

(2)若關(guān)于的方程有實(shí)根,求實(shí)數(shù)的取值范圍;

(3)若函數(shù) ,則是否存在實(shí)數(shù),使得函數(shù)的最大值為0?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

同步練習(xí)冊(cè)答案