【題目】如果,已知正方形的邊長為2,平行軸,頂點(diǎn),和分別在函數(shù),和的圖像上,則實(shí)數(shù)的值為________
【答案】
【解析】
設(shè)B(x,2logax),利用BC平行于x軸得出C(x2,2logax),利用AB垂直于x軸 得出 A(x,3logax),則正方形ABCD 的邊長從橫縱兩個角度表示為logax=x2﹣x=2,求出x,再求a 即可.
設(shè)B(x,2logax),∵BC平行于x軸,∴C(x′,2logax)即logax′=2logax,∴x′=x2,
∴正方形ABCD邊長=|BC|=x2﹣x=2,解得x=2.
由已知,AB垂直于x軸,∴A(x,3logax),正方形ABCD邊長=|AB|=3logax﹣2logax=logax=2,即loga2=2,∴a,
故答案為:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于兩個定義域相同的函數(shù)、,若存在實(shí)數(shù)、使,則稱函數(shù)是由“基函數(shù)、”生成的.
(1)和生成一個偶函數(shù),求的值;
(2)若由,(且)生成,求的取值范圍;
(3)試?yán)谩盎瘮?shù),”生成一個函數(shù),使滿足下列條件:①是偶函數(shù);②有最小值1,請求出函數(shù)的解析式并進(jìn)一步研究該函數(shù)的單調(diào)性(無需證明).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一項自“一帶一路”沿線20國青年參與的評選中“高鐵”、“支付寶”、“共享單車”和“網(wǎng)購”被稱作中國“新四大發(fā)明”,曾以古代“四大發(fā)明”推動世界進(jìn)步的中國,正再次以科技創(chuàng)新向世界展示自己的發(fā)展理念.某班假期分為四個社會實(shí)踐活動小組,分別對“新四大發(fā)明”對人們生活的影響進(jìn)行調(diào)查.于開學(xué)進(jìn)行交流報告會.四個小組隨機(jī)排序,則“支付寶”小組和“網(wǎng)購”小組不相鄰的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若函數(shù)恰有兩個零點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于復(fù)數(shù),下列命題①若,則;②為實(shí)數(shù)的充要條件是;③若是純虛數(shù),則;④若,則.其中真命題的個數(shù)為( )
A.1B.2
C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f (x)=x-(a+1)ln x-(a∈R),g (x)=x2+ex-xex.
(1)當(dāng)x∈[1,e] 時,求f (x)的最小值;
(2)當(dāng)a<1時,若存在x1∈[e,e2],使得對任意的x2∈[-2,0],f (x1)<g (x2)恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,底面,且為正三角形,,為的中點(diǎn).
(1)求證:直線平面;
(2)求三棱錐的體積;
(3)三棱柱的頂點(diǎn)都在一個球面上,求該球的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的圖象經(jīng)過點(diǎn),且在區(qū)間上單調(diào)遞減,在上單調(diào)遞增.
(Ⅰ)證明;
(Ⅱ)求的解析式;
(Ⅲ)若對于任意的,,不等式恒成立,試問:這樣的是否存在,若存在,請求出的范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某市準(zhǔn)備在道路EF的一側(cè)修建一條運(yùn)動比賽道,賽道的前一部分為曲線段FBC.該曲線段是函數(shù)時的圖象,且圖象的最高點(diǎn)為B賽道的中間部分為長千米的直線跑道CD,且CD∥EF;賽道的后一部分是以為圓心的一段圓弧DE.
(1)求的值和∠DOE的大。
(2)若要在圓弧賽道所對應(yīng)的扇形ODE區(qū)域內(nèi)建一個“矩形草坪”,矩形的一邊在道路EF上,一個頂點(diǎn)在半徑OD上,另外一個頂點(diǎn)P在圓弧DE上,求“矩形草坪”面積的最大值,并求此時P點(diǎn)的位置.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com