與-
33
4
π終邊相同的最小正角是
 
考點(diǎn):終邊相同的角
專題:三角函數(shù)的求值
分析:直接把給出的角化為2π的整數(shù)倍加[0,2π)間的一個(gè)正角的形式得答案.
解答: 解:由-
33
4
π=
-40+7
4
π=-10π+
7
4
π.
所以與-
33
4
π終邊相同的最小的正角是
7
4
π.
故答案為:
7
4
π
點(diǎn)評(píng):本題考查了終邊相同的角,是基礎(chǔ)的概念題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若存在非零常數(shù)T,對(duì)任意x∈R均有f(x+T)=T•f(x),則稱f(x)為T線性相關(guān)函數(shù).
(1)判斷g(x)=x是否為T線性相關(guān)的函數(shù);
(2)若h(x)=sinkx為T線性相關(guān)函數(shù),求實(shí)數(shù)k應(yīng)滿足的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sin(α-
π
4
)=m,則cos2
3
4
π-α)-tan(kπ+α-
π
4
)•cos(α-
7
4
π)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于函數(shù)f(x),若對(duì)于任意的a,b,c∈R,f(a),f(b),f(c)為某一三角形的三邊長(zhǎng),則稱f(x)為“可構(gòu)造三角形函數(shù)”,已知函數(shù)f(x)=
ex+t
ex+1
是“可構(gòu)造三角形函數(shù)”,則實(shí)數(shù)t的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=f(x)的圖象如圖所示,在區(qū)間[a,b]上可找到n(n≥2)個(gè)不同的數(shù)x1,x2…xn,使得
f(x1)
x1
=
f(x2)
x2
=…=
f(xn)
xn
,則n的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓
x2
9
+
y2
4+k
=1的離心率為
4
5
,則k=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于x的不等式x3-3x2-9x+2-m≥0對(duì)任意x∈[-2,2]恒成立,則m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)棱長(zhǎng)為1的正方體為圖形C1,以C1各個(gè)面的中心為頂點(diǎn)的正八面體為圖形C2,以C2各個(gè)面的中心為頂點(diǎn)的正方體為圖形C3,以C3各個(gè)面的中心為頂點(diǎn)的正八面體為圖形C4,…,以此類推.設(shè)正多面體Cn(n∈N+)的棱長(zhǎng)為an(各棱長(zhǎng)相等的多面體稱為正多面體),則:
(1)a1=1,a2=
 
;
(2)當(dāng)n為奇數(shù)時(shí),an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在空間直角坐標(biāo)系下,點(diǎn)A(x2+4,4-y,1+2z)關(guān)于y軸的對(duì)稱點(diǎn)是B(-4x,9,7-z),則x,y,z的值依次是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案