(2013•青島一模)若
t
1
(2x+
1
x
)dx=3+ln2
,且t>1,則t的值為
2
2
分析:根據(jù)題意找出2x+
1
x
的原函數(shù),然后根據(jù)積分運(yùn)算法則,兩邊進(jìn)行計(jì)算,求出t值;
解答:解:
t
1
(2x+
1
x
)dx=
(x2+lnx)|
t
1
=t2+lnt-(1+ln1)=3+ln2,t>1,
∴t2+lnt=4+ln2=22+ln2,∴t=2,
故答案為2;
點(diǎn)評(píng):此題主要考查定積分的計(jì)算,解題的關(guān)鍵是找到被積函數(shù)的原函數(shù),此題是一道基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•青島一模)下列函數(shù)中周期為π且為偶函數(shù)的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•青島一模)“k=
2
”是“直線x-y+k=0與圓“x2+y2=1相切”的( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•青島一模)函數(shù)y=21-x的大致圖象為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•青島一模)已知x,y滿足約束條件
x2+y2≤4
x-y+2≥0
y≥0
,則目標(biāo)函數(shù)z=-2x+y的最大值是
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•青島一模)在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(-1,0),B(1,0),動(dòng)點(diǎn)C滿足:△ABC的周長(zhǎng)為2+2
2
,記動(dòng)點(diǎn)C的軌跡為曲線W.
(Ⅰ)求W的方程;
(Ⅱ)曲線W上是否存在這樣的點(diǎn)P:它到直線x=-1的距離恰好等于它到點(diǎn)B的距離?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;
(Ⅲ)設(shè)E曲線W上的一動(dòng)點(diǎn),M(0,m),(m>0),求E和M兩點(diǎn)之間的最大距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案