【題目】設(shè)函數(shù),則下列結(jié)論正確的是( )
A.當(dāng)時(shí),函數(shù)在上有最小值;
B.當(dāng)時(shí),函數(shù)在上有最小值;
C.對任意的實(shí)數(shù),函數(shù)的圖象關(guān)于點(diǎn)對稱;
D.方程可能有三個實(shí)數(shù)根.
【答案】CD
【解析】
對于A中,當(dāng)時(shí),函數(shù),轉(zhuǎn)化為二次函數(shù)的性質(zhì),即可判定;對于B中,當(dāng)時(shí),函數(shù)的值域?yàn)?/span>,即可判定;對于C中,根據(jù)函數(shù)的圖象關(guān)于原點(diǎn)對稱,利用平移即可判定;對于D中,令,即可判定.
對于A中,當(dāng)時(shí),函數(shù),函數(shù)在上為單調(diào)遞增函數(shù),函數(shù)的值域?yàn)?/span>,所以函數(shù)在上沒有最小值,所以A不正確;
對于B中,當(dāng)時(shí),函數(shù)的圖象,如圖所示,
此時(shí)函數(shù)的值域?yàn)?/span>,所以函數(shù)在上沒有最小值,所以B不正確;
對于C中,函數(shù),滿足,所以函數(shù)的圖象關(guān)于原點(diǎn)對稱,又由函數(shù)的圖象是由函數(shù)沿軸平移個單位,所以函數(shù)的圖象關(guān)于對稱,所以C正確;
對于D中,令,則,解得,所以D正確.
故選CD.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓E: (a>b>0)的左焦點(diǎn)F1與拋物線y2=﹣4x的焦點(diǎn)重合,橢圓E的離心率為 ,過點(diǎn)M (m,0)(m> )作斜率不為0的直線l,交橢圓E于A,B兩點(diǎn),點(diǎn)P( ,0),且 為定值.
(Ⅰ)求橢圓E的方程;
(Ⅱ)求△OAB面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)用收集到的6組數(shù)據(jù)對制作成如圖所示的散點(diǎn)圖(點(diǎn)旁的數(shù)據(jù)為該點(diǎn)坐標(biāo)),并由最小二乘法計(jì)算得到回歸直線的方程:,相關(guān)系數(shù)為,相關(guān)指數(shù)為;經(jīng)過殘差分析確定點(diǎn)為“離群點(diǎn)”(對應(yīng)殘差過大的點(diǎn)),把它去掉后,再用剩下的5組數(shù)據(jù)計(jì)算得到回歸直線的方程:,相關(guān)系數(shù)為,相關(guān)指數(shù)為.則以下結(jié)論中,不正確的是( )
A. , B. ,
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商品在近30天內(nèi)每件的銷售價(jià)格p(元)與時(shí)間t(天)的函數(shù)關(guān)系是該商品的日銷售量Q(件)與時(shí)間t(天)的函數(shù)關(guān)系是Q=-t+40(0<t≤30,t∈N).
(1)求這種商品的日銷售金額的解析式;
(2)求日銷售金額的最大值,并指出日銷售金額最大的一天是30天中的第幾天?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是定義在R上的偶函數(shù),當(dāng)x≥0時(shí),f(x)=x2–2x+2.
(1)求函數(shù)f(x)的解析式;
(2)當(dāng)x∈[m,n]時(shí),f(x)的取值范圍為[2m,2n],試求實(shí)數(shù)m,n的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是定義在R上的偶函數(shù),且f(x﹣ )=f(x+ )恒成立,當(dāng)x∈[2,3]時(shí),f(x)=x,則當(dāng)x∈(﹣2,0)時(shí),函數(shù)f(x)的解析式為( )
A.|x﹣2|
B.|x+4|
C.3﹣|x+1|
D.2+|x+1|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形為梯形,平面,,
為中點(diǎn).
(1)求證:平面平面;
(2)線段上是否存在一點(diǎn),使平面?若存在,找出具體位置,并進(jìn)行證明:若不存在,請分析說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線是拋物線的準(zhǔn)線,直線,且與拋物線沒有公共點(diǎn),動點(diǎn)在拋物線上,點(diǎn)到直線和的距離之和的最小值等于2.
(Ⅰ)求拋物線的方程;
(Ⅱ)點(diǎn)在直線上運(yùn)動,過點(diǎn)做拋物線的兩條切線,切點(diǎn)分別為,在平面內(nèi)是否存在定點(diǎn),使得恒成立?若存在,請求出定點(diǎn)的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,一張坐標(biāo)紙上已作出圓及點(diǎn),折疊此紙片,使與圓周上某點(diǎn)重合,每次折疊都會留下折痕,設(shè)折痕與直線的交點(diǎn)為,令點(diǎn)的軌跡為曲線.
(1)求曲線的方程;
(2)若直線與軌跡交于、兩點(diǎn),且直線與以為直徑的圓相切,若,求的面積的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com