【題目】設(shè)函數(shù)f(x)=lnx+ ,m∈R
(1)當(dāng)m=e(e為自然對(duì)數(shù)的底數(shù))時(shí),求f(x)的最小值;
(2)討論函數(shù)g(x)=f′(x)﹣ 零點(diǎn)的個(gè)數(shù);
(3)(理科)若對(duì)任意b>a>0, <1恒成立,求m的取值范圍.

【答案】
(1)解:當(dāng)m=e時(shí), ,x>0,

解f′(x)>0,得x>e,

∴f(x)單調(diào)遞增;

同理,當(dāng)0<x<e時(shí),f′(x)<0,f(x)單調(diào)遞減,

∴f(x)只有極小值f(e),

且f(e)=lne+ =2,

∴f(x)的極小值為2


(2)解:∵g(x)= = =0,

∴m= ,

令h(x)=x﹣ ,x>0,m∈R,

則h(1)= ,h′(x)=1﹣x2=(1+x)(1﹣x),

令h′(x)>0,解得0<x<1,

∴h(x)在區(qū)間(0,1)上單調(diào)遞增,值域?yàn)椋?, );

同理,令h′(x)<0,解得x>1,

∴g(x)要區(qū)是(1,+∞)上單調(diào)遞減,值域?yàn)椋ī仭蓿? ).

∴當(dāng)m≤0,或m= 時(shí),g(x)只有一個(gè)零點(diǎn);

當(dāng)0<m< 時(shí),g(x)有2個(gè)零點(diǎn);

當(dāng)m> 時(shí),g(x)沒(méi)有零點(diǎn)


(3)解:(理)對(duì)任意b>a>0, <1恒成立,

等價(jià)于f(b)﹣b<f(a)﹣a恒成立;

設(shè)h(x)=f(x)﹣x=lnx+ ﹣x(x>0),

則h(b)<h(a).

∴h(x)在(0,+∞)上單調(diào)遞減;

∵h(yuǎn)′(x)= ﹣1≤0在(0,+∞)上恒成立,

∴m≥﹣x2+x=﹣ + (x>0),

∴m≥

對(duì)于m= ,h′(x)=0僅在x= 時(shí)成立;

∴m的取值范圍是[ ,+∞)


【解析】(1)當(dāng)m=e時(shí), ,x>0,由此利用導(dǎo)數(shù)性質(zhì)能求出f(x)的極小值.(2)由g(x)= = =0,得m= ,令h(x)=x﹣ ,x>0,m∈R,則h(1)= ,h′(x)=1﹣x2=(1+x)(1﹣x),由此利用導(dǎo)數(shù)性質(zhì)能求出函數(shù)g(x)=f′(x)﹣ 零點(diǎn)的個(gè)數(shù).(3)(理)當(dāng)b>a>0時(shí),f′(x)<1在(0,+∞)上恒成立,由此能求出m的取值范圍.
【考點(diǎn)精析】本題主要考查了函數(shù)的極值與導(dǎo)數(shù)的相關(guān)知識(shí)點(diǎn),需要掌握求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,離心率為,過(guò)點(diǎn)的直線與橢圓交于兩點(diǎn).

1若直線的斜率為1, ,求橢圓的標(biāo)準(zhǔn)方程;

21中橢圓的右頂點(diǎn)為,直線的傾斜角為,問(wèn)為何值時(shí),取得最大值,并求出這個(gè)最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線與圓相交于四個(gè)點(diǎn),,軸右側(cè),為坐標(biāo)原點(diǎn)。

(1)當(dāng)曲線與圓恰有兩個(gè)公共點(diǎn)時(shí),求;

(2)當(dāng)面積最大時(shí),求;

(3)證明:直線與直線相交于定點(diǎn),求求出點(diǎn)的坐標(biāo)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f′(x)是奇函數(shù)f(x)(x∈R)的導(dǎo)函數(shù),f(﹣1)=0,當(dāng)x>0時(shí),xf′(x)﹣f(x)<0,則使得f(x)>0成立的x的取值范圍是(
A.(﹣∞,﹣1)∪(0,1)
B.(﹣1,0)∪(1,+∞)
C.(﹣∞,﹣1)∪(﹣1,0)
D.(0,1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知2cosC(acosB+bcosA)=c.
(1)求C;
(2)若c= ,△ABC的面積為 ,求△ABC的周長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某位同學(xué)進(jìn)行寒假社會(huì)實(shí)踐活動(dòng),為了對(duì)白天平均氣溫與某奶茶店的某種飲料銷量之間的關(guān)系進(jìn)行分析研究,他分別記錄了1月11日至1月15日的白天平均氣溫 (℃)與該小賣(mài)部的這種飲料銷量(杯),得到如下數(shù)據(jù):

日期

1月11日

1月12日

1月13日

1月14日

1月15日

平均氣溫(℃)

9

10

12

11

8

銷量(杯)

23

25

30

26

21

(1)請(qǐng)根據(jù)所給五組數(shù)據(jù),求出關(guān)于的線性回歸方程;

(2)據(jù)(1)中所得的線性回歸方程,若天氣預(yù)報(bào)1月16日的白天平均氣溫7(℃),請(qǐng)預(yù)測(cè)該奶茶店這種飲料的銷量.

(參考公式:)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè):實(shí)數(shù)滿足,其中:實(shí)數(shù)滿足.

(1),且為真,為假,求實(shí)數(shù)的取值范圍;

(2)的充分不必要條件,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】以下判斷正確的是(
A.函數(shù)y=f(x)為R上可導(dǎo)函數(shù),則f'(x0)=0是x0為函數(shù)f(x)極值點(diǎn)的充要條件
B.命題“ ”的否定是“?x∈R,x2+x﹣1>0”
C.“ ”是“函數(shù)f(x)=sin(ωx+φ)是偶函數(shù)”的充要條件
D.命題“在△ABC中,若A>B,則sinA>sinB”的逆命題為假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀程序框圖,若輸出結(jié)果S= ,則整數(shù)m的值為(

A.7
B.8
C.9
D.10

查看答案和解析>>

同步練習(xí)冊(cè)答案