【題目】某中學(xué)數(shù)學(xué)老師分別用兩種不同教學(xué)方式對入學(xué)數(shù)學(xué)平均分和優(yōu)秀率都相同的甲、乙兩個(gè)高一新班(人數(shù)均為20人)進(jìn)行教學(xué)(兩班的學(xué)生學(xué)習(xí)數(shù)學(xué)勤奮程度和自覺性一致),數(shù)學(xué)期終考試成績莖葉圖如下:
(1)學(xué)校規(guī)定:成績不低于75分的為優(yōu)秀,請?zhí)顚懴旅娴?/span>聯(lián)表,并判斷有多大把握認(rèn)為“成績優(yōu)秀與教學(xué)方式有關(guān)”.
附:參考公式及數(shù)據(jù)
(2)從兩個(gè)班數(shù)學(xué)成績不低于90分的同學(xué)中隨機(jī)抽取3名,設(shè)為抽取成績不低于95分同學(xué)人數(shù),求的分布列和期望.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中,已知某曲線C的極坐標(biāo)方程為,直線的極坐標(biāo)方程為
(1)求該曲線C的直角坐標(biāo)系方程及離心率
(2)已知點(diǎn)為曲線C上的動(dòng)點(diǎn),求點(diǎn)到直線的距離的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知、分別是橢圓 的左、右焦點(diǎn),點(diǎn)是橢圓上一點(diǎn),且.
(1)求橢圓的方程;
(2)設(shè)直線與橢圓相交于,兩點(diǎn),若,其中為坐標(biāo)原點(diǎn),判斷到直線的距離是否為定值?若是,求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在點(diǎn)處的切線與直線垂直.(注: 為自然對數(shù)的底數(shù))
(1)求的值;
(2)若函數(shù)在區(qū)間上存在極值,求實(shí)數(shù)的取值范圍;
(3)求證:當(dāng)時(shí), 恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的右焦點(diǎn)為,且點(diǎn)在橢圓上.
⑴求橢圓的標(biāo)準(zhǔn)方程;
⑵已知?jiǎng)又本過點(diǎn)且與橢圓交于兩點(diǎn).試問軸上是否存在定點(diǎn),使得恒成立?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左焦點(diǎn)為,右頂點(diǎn)為,上頂點(diǎn)為,過、、三點(diǎn)的圓的圓心坐標(biāo)為.
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線(為常數(shù), )與橢圓交于不同的兩點(diǎn)和.
(。┊(dāng)直線過,且時(shí),求直線的方程;
(ⅱ)當(dāng)坐標(biāo)原點(diǎn)到直線的距離為,且面積為時(shí),求直線的傾斜角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求曲線在點(diǎn)處的切線方程;
(2)若關(guān)于的不等式恒成立,求整數(shù)的最小值;
(3)若正實(shí)數(shù)滿足,證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的方程為,雙曲線的一條漸近線與軸所成的夾角為,且雙曲線的焦距為.
(1)求橢圓的方程;
(2)設(shè)分別為橢圓的左,右焦點(diǎn),過作直線 (與軸不重合)交橢圓于, 兩點(diǎn),線段的中點(diǎn)為,記直線的斜率為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)y=f(x)在區(qū)間[0,1]上的圖象是連續(xù)不斷的一條曲線,且恒有0≤f(x)≤1,可以用隨機(jī)模擬方法近似計(jì)算由曲線y=f(x)及直線x=0,x=1,y=0所圍成部分的面積S.先產(chǎn)生兩組(每組N個(gè))0~1區(qū)間上的均勻隨機(jī)數(shù)x1,x2,…,xN和y1,y2,…,yN,由此得到N個(gè)點(diǎn)(xi,yi)(i=1,2,…,N).再數(shù)出其中滿足yi≤f(xi)(i=1,2,…,N)的點(diǎn)數(shù)N1,那么由隨機(jī)模擬方法可得S的近似值為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com