【題目】在平面直角坐標(biāo)系中,對(duì)于點(diǎn),若函數(shù)滿足:,都有,就稱這個(gè)函數(shù)是點(diǎn)A的“限定函數(shù)”.以下函數(shù):①,②,③,④,其中是原點(diǎn)O的“限定函數(shù)”的序號(hào)是______.已知點(diǎn)在函數(shù)的圖象上,若函數(shù)是點(diǎn)A的“限定函數(shù)”,則實(shí)數(shù)a的取值范圍是______.
【答案】①③
【解析】
(1)當(dāng),求出各序號(hào)中y的取值范圍A,若則此函數(shù)是原點(diǎn)的“限定函數(shù)”; (2) 由題意知,當(dāng)時(shí),若是點(diǎn)A的“限定函數(shù)”,則,由集合的包含關(guān)系列出不等式組即可求得a的取值范圍.
(1) ①當(dāng)時(shí),,因?yàn)?/span>,所以函數(shù)①是原點(diǎn)的“限定函數(shù)”;
②因?yàn)?/span>在上單調(diào)遞減,在上單調(diào)遞增,所以當(dāng)時(shí), ,因?yàn)?/span>,所以②不是原點(diǎn)的“限定函數(shù)”;
③因?yàn)?/span>在上單調(diào)遞增,所以當(dāng)時(shí),,因?yàn)?/span>,所以③是原點(diǎn)的“限定函數(shù)”;
④因?yàn)?/span>在上單調(diào)遞增,所以當(dāng)時(shí),,因?yàn)?/span>,所以④不是原點(diǎn)的“限定函數(shù)”.
(2)因?yàn)辄c(diǎn)在函數(shù)的圖象上,所以,
因?yàn)?/span>是點(diǎn)A的“限定函數(shù)”,并且當(dāng)時(shí),,
所以,解得.
故答案為:①③;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,求不等式的解集;
(2)若關(guān)于的不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列分別滿足:,其中,其中,設(shè)數(shù)列前n項(xiàng)和分別為.
(1)若數(shù)列為遞增數(shù)列,求數(shù)列的通項(xiàng)公式;
(2)若數(shù)列滿足:存在唯一的正整數(shù)k(),使得,則稱為“k墜點(diǎn)數(shù)列”
(Ⅰ)若數(shù)列為“6墜點(diǎn)數(shù)列",求;
(Ⅱ)若數(shù)列為“5墜點(diǎn)數(shù)列”,是否存在“p墜點(diǎn)數(shù)列”,使得,若存在,求正整數(shù)m的最大值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)在處的切線方程;
(2)若不等式對(duì)任意的都成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若數(shù)列滿足,則稱數(shù)列為“平方遞推數(shù)列”.已知數(shù)列中,,點(diǎn)在函數(shù)的圖象上,其中為正整數(shù).
(1)證明數(shù)列是“平方遞推數(shù)列”,且數(shù)列為等比數(shù)列;
(2)設(shè)(1)中“平方遞推數(shù)列”的前項(xiàng)積為,即,求;
(3)在(2)的條件下,記,求數(shù)列的前項(xiàng)和,并求使的的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在上為增函數(shù),求的取值范圍;
(2)若函數(shù)有兩個(gè)不同的極值點(diǎn),記作,,且,證明:(為自然對(duì)數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于數(shù)列,定義為的“優(yōu)值”.現(xiàn)已知某數(shù)列的“優(yōu)值”為 ,記數(shù)列的前項(xiàng)和為,若對(duì)一切的,都有恒成立,則實(shí)數(shù)的取值范圍為___________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn),直線與拋物線交于不同兩點(diǎn)、,直線、與拋物線的另一交點(diǎn)分別為兩點(diǎn)、,連接,點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)為點(diǎn),連接、.
(1)證明:;
(2)若的面積,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),函數(shù)在點(diǎn)處的切線斜率為0.
(1)試用含有的式子表示,并討論的單調(diào)性;
(2)對(duì)于函數(shù)圖象上的不同兩點(diǎn),,如果在函數(shù)圖象上存在點(diǎn),使得在點(diǎn)處的切線,則稱存在“跟隨切線”.特別地,當(dāng)時(shí),又稱存在“中值跟隨切線”.試問:函數(shù)上是否存在兩點(diǎn)使得它存在“中值跟隨切線”,若存在,求出的坐標(biāo),若不存在,說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com