【題目】已知函數(shù),函數(shù)在點(diǎn)處的切線斜率為0.

1)試用含有的式子表示,并討論的單調(diào)性;

2)對于函數(shù)圖象上的不同兩點(diǎn),,如果在函數(shù)圖象上存在點(diǎn),使得在點(diǎn)處的切線,則稱存在跟隨切線”.特別地,當(dāng)時,又稱存在中值跟隨切線”.試問:函數(shù)上是否存在兩點(diǎn)使得它存在中值跟隨切線,若存在,求出的坐標(biāo),若不存在,說明理由.

【答案】1,單調(diào)性見解析;(2)不存在,理由見解析

【解析】

1)由題意得,即可得;求出函數(shù)的導(dǎo)數(shù),再根據(jù)、、、分類討論,分別求出、的解集即可得解;

2)假設(shè)滿足條件的、存在,不妨設(shè),,由題意得可得,令),構(gòu)造函數(shù)),求導(dǎo)后證明即可得解.

1)由題可得函數(shù)的定義域?yàn)?/span>,

,整理得.

.

(。┊(dāng)時,易知,.

上單調(diào)遞增,在上單調(diào)遞減.

(ⅱ)當(dāng)時,令,解得,則

①當(dāng),即時,上恒成立,則上遞增.

②當(dāng),即時,當(dāng)時,

當(dāng)時,.

所以上單調(diào)遞增,單調(diào)遞減,單調(diào)遞增.

③當(dāng),即時,當(dāng)時,;當(dāng)時,.

所以上單調(diào)遞增,單調(diào)遞減,單調(diào)遞增.

綜上,當(dāng)時,上單調(diào)遞增,在單調(diào)遞減.

當(dāng)時,上單調(diào)遞增;上單調(diào)遞減.

當(dāng)時,上遞增.

當(dāng)時,上單調(diào)遞增;上遞減.

2)滿足條件的、不存在,理由如下:

假設(shè)滿足條件的、存在,不妨設(shè),

,

,

由題可知,整理可得:,

),構(gòu)造函數(shù).

所以上單調(diào)遞增,從而,

所以方程無解,即無解.

綜上,滿足條件的AB不存在.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,對于點(diǎn),若函數(shù)滿足:,都有,就稱這個函數(shù)是點(diǎn)A限定函數(shù)”.以下函數(shù):①,②,③,④,其中是原點(diǎn)O限定函數(shù)的序號是______.已知點(diǎn)在函數(shù)的圖象上,若函數(shù)是點(diǎn)A限定函數(shù),則實(shí)數(shù)a的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的短軸兩端點(diǎn)與左焦點(diǎn)圍成的三角形面積為3,短軸兩端點(diǎn)與長軸一端點(diǎn)圍成的三角形面積為2,設(shè)橢圓的左、右頂點(diǎn)分別為是橢圓上除兩點(diǎn)外一動點(diǎn).

1)求橢圓的方程;

2)過橢圓的左焦點(diǎn)作平行于直線是坐標(biāo)原點(diǎn))的直線與曲線交于兩點(diǎn),點(diǎn)關(guān)于原點(diǎn)的對稱點(diǎn)為,求證:成等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】變量、滿足約束條件,若目標(biāo)函數(shù)(其中)僅在處取得最大值,則的取值范圍為__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量,若的夾角為,則直線與圓的位置關(guān)系是(

A.相交但不過圓心B.相交且過圓心C.相切D.相離

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是菱形,,側(cè)棱,.

1)若的中點(diǎn),求所成的角;

2)設(shè)上一點(diǎn),過的平面將四棱柱分成體積相等的兩部分,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的離心率為,左、右焦點(diǎn)分別為,點(diǎn)D在橢圓C上, 的周長為.

1)求橢圓C的標(biāo)準(zhǔn)方程;

2)過圓上任意一點(diǎn)P作圓E的切線l,若l與橢圓C交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是橢圓與拋物線的一個公共點(diǎn),且橢圓與拋物線具有一個相同的焦點(diǎn)

(1)求橢圓及拋物線的方程;

(2)設(shè)過且互相垂直的兩動直線,與橢圓交于兩點(diǎn),與拋物線交于兩點(diǎn),求四邊形面積的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在棱長均相等的四棱錐, 為底面正方形的中心, ,分別為側(cè)棱,的中點(diǎn),有下列結(jié)論正確的有:( )

A.∥平面B.平面∥平面

C.直線與直線所成角的大小為D.

查看答案和解析>>

同步練習(xí)冊答案