正方形ABCD的邊長(zhǎng)為3,點(diǎn)E在邊AB上,點(diǎn)F在邊BC上,AE=BF=1,動(dòng)點(diǎn)P從點(diǎn)E出發(fā)沿直線(xiàn)向F運(yùn)動(dòng),每當(dāng)碰到正方形的邊時(shí)反彈,反彈時(shí)反射角等于入射角.當(dāng)點(diǎn)P第一次碰到點(diǎn)E時(shí),P與正方形的邊碰撞的次數(shù)為( 。
A、8B、6C、4D、3
考點(diǎn):與直線(xiàn)關(guān)于點(diǎn)、直線(xiàn)對(duì)稱(chēng)的直線(xiàn)方程
專(zhuān)題:直線(xiàn)與圓
分析:根據(jù)已知中的點(diǎn)E,F(xiàn)的位置,可知入射角的正切值為
1
2
,通過(guò)相似三角形,來(lái)確定反射后的點(diǎn)的位置,從而可得反射的次數(shù).
解答: 解:根據(jù)已知中的點(diǎn)E,F(xiàn)的位置,可知入射角的正切值tan∠FEB=
1
2
,
第一次碰撞點(diǎn)為F,在反射的過(guò)程中,
根據(jù)入射角等于反射角及平行關(guān)系的三角形的相似可得,
第二次碰撞點(diǎn)為G,在DA上,且DG=
1
6
DA,
第三次碰撞點(diǎn)為H,在DC上,且DH=
1
3
DC,
第四次碰撞點(diǎn)為M,在CB上,且CM=
1
3
BC,
第五次碰撞點(diǎn)為N,在DA上,且AN=
1
6
AD,
第六次回到E點(diǎn),AE=
1
3
AB.
故P與正方形的邊碰撞的次數(shù)為6,
故選:B.
點(diǎn)評(píng):本題主要考查了反射原理與三角形相似知識(shí)的運(yùn)用.通過(guò)相似三角形,來(lái)確定反射后的點(diǎn)的位置,從而可得反射的次數(shù),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知平面中兩個(gè)圓:(x-a12+(y-b12=r12①,(x-a22+(y-b22=r22②相交,則由①式減去②式可得上述兩圓的公共弦所在直線(xiàn)方程,將上述命題推廣到空間,推廣的命題為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義域是一切實(shí)數(shù)的函數(shù)y=f(x),其圖象是連續(xù)不斷的,且存在常數(shù)λ(λ∈R)使得f(x+λ)+λf(x)=0對(duì)任意實(shí)數(shù)x都成立,則稱(chēng)f(x)是一個(gè)“λ-伴隨函數(shù)”.有下列關(guān)于“λ-伴隨函數(shù)”的結(jié)論:
①f(x)=0是常數(shù)函數(shù)中唯一個(gè)“λ-伴隨函數(shù)”;
②“
1
2
-伴隨函數(shù)”至少有一個(gè)零點(diǎn);
③f(x)=x2是一個(gè)“λ-伴隨函數(shù)”;
其中正確結(jié)論的個(gè)數(shù)是( 。
A、1個(gè)B、2個(gè)C、3個(gè)D、0個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用數(shù)學(xué)歸納法證明不等式(1+2+3+…+n)(1+
1
2
+
1
3
+…+
1
n
)≥n2+n-1成立,初始值n0至少應(yīng)。ā 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

不等式sin(π+x)>0成立的x的取值范圍為( 。
A、(0,π)
B、(π,2π)
C、(2kπ,2kπ+π)(k∈Z)
D、(2kπ+π,2kπ+2π)(k∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中,a1=
3
5
,an=1-
1
an-1
(n≥2),則a2012=( 。
A、-
1
2
B、-
2
3
C、
3
5
D、
5
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

由直線(xiàn)y=0,x=e,y=2x及曲線(xiàn)y=
2
x
所圍成的封閉的圖形的面積為( 。
A、3
B、3+2ln2
C、e2-3
D、e

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
x+3,x≤1
-x2+2x+3,x>1
,則函數(shù)g(x)=f(x)-ex的零點(diǎn)個(gè)數(shù)為(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(
1
2
,
1
2
sinx+
3
2
cosx)與
b
=(1,y)共線(xiàn),設(shè)函數(shù)y=f(x)
(1)求函數(shù)f(x)的最小正周期及值域;
(2)已知銳角△ABC的三個(gè)內(nèi)角分別為A,B,C若有f(A-
π
3
)=
3
,AC=1,AB=2,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案