【題目】已知拋物線上一點(diǎn)到焦點(diǎn)的距離,傾斜角為的直線經(jīng)過(guò)焦點(diǎn),且與拋物線交于兩點(diǎn)、.
(1)求拋物線的標(biāo)準(zhǔn)方程及準(zhǔn)線方程;
(2)若為銳角,作線段的中垂線交軸于點(diǎn).證明:為定值,并求出該定值.
【答案】(1)拋物線的方程為,準(zhǔn)線方程為;
(2)為定值,證明見(jiàn)解析.
【解析】
(1)利用拋物線的定義結(jié)合條件,可得出,于是可得出點(diǎn)的坐標(biāo),然后將點(diǎn)的坐標(biāo)代入拋物線的方程求出的值,于此可得出拋物線的方程及其準(zhǔn)線方程;
(2)設(shè)直線的方程為,設(shè)點(diǎn)、,將直線的方程與拋物線的方程聯(lián)立,消去,列出韋達(dá)定理,計(jì)算出線段的中點(diǎn)的坐標(biāo),由此得出直線的方程,并得出點(diǎn)的坐標(biāo),計(jì)算出和的表達(dá)式,可得出,然后利用二倍角公式可計(jì)算出為定值,進(jìn)而證明題中結(jié)論成立.
(1)由拋物線的定義知,,.
將點(diǎn)代入,得,得.
拋物線的方程為,準(zhǔn)線方程為;
(2)設(shè)點(diǎn)、,設(shè)直線的方程為,
由,消去得:,則,
,.
設(shè)直線中垂線的方程為:,
令,得:,則點(diǎn),,.
,
故為定值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線的焦點(diǎn)為,過(guò)的直線交軸正半軸于點(diǎn),交拋物線于兩點(diǎn),其中點(diǎn)在第一象限.
(Ⅰ)求證:以線段為直徑的圓與軸相切;
(Ⅱ)若,,,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率,連接橢圓的四個(gè)頂點(diǎn)得到的菱形的面積為4。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法中正確的個(gè)數(shù)是( )
①命題:“、,若,則”,用反證法證明時(shí)應(yīng)假設(shè)或;
②若,則、中至少有一個(gè)大于;
③若、、、、成等比數(shù)列,則;
④命題:“,使得”的否定形式是:“,總有”.
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形所在的平面與直角梯形所在的平面成的二面角,,,,,,.
(1)求證:面;
(2)在線段上求一點(diǎn),使銳二面角的余弦值為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于定義在區(qū)間D上的函數(shù),若存在閉區(qū)間和常數(shù),使得對(duì)任意,都有,且對(duì)任意∈D,當(dāng)時(shí),恒成立,則稱函數(shù)為區(qū)間D上的“平底型”函數(shù).
(Ⅰ)判斷函數(shù)和是否為R上的“平底型”函數(shù)? 并說(shuō)明理由;
(Ⅱ)設(shè)是(Ⅰ)中的“平底型”函數(shù),k為非零常數(shù),若不等式對(duì)一切R恒成立,求實(shí)數(shù)的取值范圍;
(Ⅲ)若函數(shù)是區(qū)間上的“平底型”函數(shù),求和的值.
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義在的奇函數(shù)滿足:①;②對(duì)任意均有;③對(duì)任意,均有.
(1)求的值;
(2)利用定義法證明在上單調(diào)遞減;
(3)若對(duì)任意,恒有,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知 ,則關(guān)于的方程,給出下列五個(gè)命題:①存在實(shí)數(shù),使得該方程沒(méi)有實(shí)根;
②存在實(shí)數(shù),使得該方程恰有個(gè)實(shí)根;
③存在實(shí)數(shù),使得該方程恰有個(gè)不同實(shí)根;
④存在實(shí)數(shù),使得該方程恰有個(gè)不同實(shí)根;
⑤存在實(shí)數(shù),使得該方程恰有個(gè)不同實(shí)根.
其中正確的命題的個(gè)數(shù)是( )
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com