【題目】已知函數(shù).

(1)當(dāng)時(shí),證明: 為偶函數(shù);

(2)若上單調(diào)遞增,求實(shí)數(shù)的取值范圍;

(3)若,求實(shí)數(shù)的取值范圍,使上恒成立.

【答案】(1)見解析;(2);(3)

【解析】試題分析:(1)代入,根據(jù)函數(shù)奇偶性的定義,即可判定為偶函數(shù);

(2)利用函數(shù)單調(diào)性的定義,求得函數(shù)上單調(diào)遞增,進(jìn)而得到對(duì)任意的恒成立,即可求解實(shí)數(shù)的取值范圍;

(3)由(1)、(2)知函數(shù)的最小值進(jìn)而得,設(shè)得不等式恒成立,等價(jià)于,進(jìn)而恒成立,利用二次函數(shù)的性質(zhì)即可求解實(shí)數(shù)的取值范圍

試題解析:

(1)當(dāng)時(shí), ,定義域關(guān)于原點(diǎn)對(duì)稱,

,說明為偶函數(shù);

(2)在上任取、,且,

,

因?yàn)?/span>,函數(shù)為增函數(shù),得,

上單調(diào)遞增,得, ,

于是必須恒成立,

對(duì)任意的恒成立,

;

(3)由(1)、(2)知函數(shù)上遞減,在上遞增,

其最小值,

,

設(shè),則,

于是不等式恒成立,等價(jià)于,

恒成立,

,僅當(dāng),即時(shí)取最大值,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)

(1)若函數(shù)上為增函數(shù),求的取值范圍;

(2)若函數(shù)上不單調(diào)時(shí);

上的最大值、最小值分別為,求

設(shè),若,對(duì)恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中、 為自然對(duì)數(shù)的底數(shù), 是函數(shù)的導(dǎo)函數(shù),求函數(shù)在區(qū)間上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知方程

(1)求該方程表示一條直線的條件;

(2)當(dāng)為何實(shí)數(shù)時(shí),方程表示的直線斜率不存在?求出這時(shí)的直線方程;

(3)已知方程表示的直線軸上的截距為-3,求實(shí)數(shù)的值;

(4)若方程表示的直線的傾斜角是45°,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)某電子商務(wù)平臺(tái)的調(diào)查統(tǒng)計(jì)顯示,參與調(diào)查的1000位上網(wǎng)購物者的年齡情況如圖.

(1)已知,三個(gè)年齡段的上網(wǎng)購物者人數(shù)成等差數(shù)列,,的值;

(2)該電子商務(wù)平臺(tái)將年齡在之間的人群定義為高消費(fèi)人群,其他的年齡段定義為潛在消費(fèi)人群,為了鼓勵(lì)潛在消費(fèi)人群的消費(fèi)該平臺(tái)決定發(fā)放代金券,高消費(fèi)人群每人發(fā)放50元的代金券,潛在消費(fèi)人群每人發(fā)放80元的代金券,已經(jīng)采用分層抽樣的方式從參與調(diào)查的1000位上網(wǎng)購物者中抽取了10人,現(xiàn)在要在這10人中隨機(jī)抽取3人進(jìn)行回訪,求此三人獲得代金券總和的分布列與數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)是定義在上的函數(shù),并且滿足下面三個(gè)條件:①對(duì)任意正數(shù),都有;②當(dāng)時(shí), ;③.

(1)求, 的值;

(2)證明上是減函數(shù);

(3)如果不等式成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)某電子商務(wù)平臺(tái)的調(diào)查統(tǒng)計(jì)顯示,參與調(diào)查的位上網(wǎng)購物者的年齡情況如右圖.

1已知、、三個(gè)年齡段的上網(wǎng)購物者人數(shù)成等差數(shù)列,求的值;

2該電子商務(wù)平臺(tái)將年齡在之間的人群定義為高消費(fèi)人群,其他的年齡段定義為潛在消費(fèi)人群,為了鼓勵(lì)潛在消費(fèi)人群的消費(fèi),該平臺(tái)決定發(fā)放代金券,高消費(fèi)人群每人發(fā)放元的代金券,潛在消費(fèi)人群每人發(fā)放元的代金券.已經(jīng)采用分層抽樣的方式從參與調(diào)查的位上網(wǎng)購物者中抽取了人,現(xiàn)在要在這人中隨機(jī)抽取人進(jìn)行回訪,求此三人獲得代金券總和的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若的一個(gè)極值點(diǎn)到直線的距離為1,求的值;

(2)求方程的根的個(gè)數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在公差不為零的等差數(shù)列中,已知,且成等比數(shù)列.

(1)求數(shù)列的通項(xiàng)公式;

(2)設(shè)數(shù)列的前項(xiàng)和為,記,求數(shù)列的前項(xiàng)和

查看答案和解析>>

同步練習(xí)冊答案