【題目】已知一圓錐底面圓的直徑為3,圓錐的高為,在該圓錐內(nèi)放置一個(gè)棱長(zhǎng)為a的正四面體,并且正四面體在該幾何體內(nèi)可以任意轉(zhuǎn)動(dòng),則a的最大值為(

A.3B.C.D.

【答案】B

【解析】

根據(jù)題意,該四面體內(nèi)接于圓錐的內(nèi)切球,通過內(nèi)切球即可得到的最大值.

解:依題意,四面體可以在圓錐內(nèi)任意轉(zhuǎn)動(dòng),故該四面體內(nèi)接于圓錐的內(nèi)切球,

設(shè)球心為,球的半徑為,下底面半徑為,軸截面上球與圓錐母線的切點(diǎn)為,圓錐的軸截面如圖:

,因?yàn)?/span>,

故可得:;

所以:三角形為等邊三角形,故的中心,

連接,則平分;

所以,即,

即四面體的外接球的半徑為

另正四面體可以從正方體中截得,如圖:

從圖中可以得到,當(dāng)正四面體的棱長(zhǎng)為時(shí),截得它的正方體的棱長(zhǎng)為,

而正四面體的四個(gè)頂點(diǎn)都在正方體上,

故正四面體的外接球即為截得它的正方體的外接球,

所以

所以

的最大值為

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是無窮數(shù)列,若存在正整數(shù)k,使得對(duì)任意,均有,則稱是間隔遞增數(shù)列,k的間隔數(shù),下列說法正確的是(

A.公比大于1的等比數(shù)列一定是間隔遞增數(shù)列

B.已知,則是間隔遞增數(shù)列

C.已知,則是間隔遞增數(shù)列且最小間隔數(shù)是2

D.已知,若是間隔遞增數(shù)列且最小間隔數(shù)是3,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)fx)=|xa|+|x+b|,ab0.

1)當(dāng)a1,b1時(shí),求不等式fx)<3的解集;

2)若fx)的最小值為2,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四棱錐,底面為平行四邊形,且,點(diǎn)M的中點(diǎn),,且平面平面.

1)求證:平面平面;

2)當(dāng)直線與平面所成角的正切值為時(shí),求四棱錐的體積及平面將四棱錐分成的兩部分的體積比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

(1)當(dāng)時(shí), 恒成立,求的范圍;

(2)若處的切線為,求的值.并證明當(dāng))時(shí), .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)滿足,

1)求函數(shù)的解析式;

2)求函數(shù)的單調(diào)區(qū)間;

3)當(dāng)時(shí),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解甲、乙兩種離子在小鼠體內(nèi)的殘留程度,進(jìn)行如下試驗(yàn):將200只小鼠隨機(jī)分成兩組,每組100只,其中組小鼠給服甲離子溶液,組小鼠給服乙離子溶液.每只小鼠給服的溶液體積相同、摩爾濃度相同.經(jīng)過一段時(shí)間后用某種科學(xué)方法測(cè)算出殘留在小鼠體內(nèi)離子的百分比.根據(jù)試驗(yàn)數(shù)據(jù)分別得到如下直方圖:

為事件:“乙離子殘留在體內(nèi)的百分比不低于”,根據(jù)直方圖得到的估計(jì)值為.

(1)求乙離子殘留百分比直方圖中的值;

(2)分別估計(jì)甲、乙離子殘留百分比的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值為代表).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù),為直線的傾斜角),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)寫出曲線的直角坐標(biāo)方程,并求時(shí)直線的普通方程;

2)直線和曲線交于兩點(diǎn),點(diǎn)的直角坐標(biāo)為,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國古代教育要求學(xué)生掌握六藝,即禮、樂、射、御、書、數(shù).某校為弘揚(yáng)中國傳統(tǒng)文化,舉行有關(guān)六藝的知識(shí)競(jìng)賽.甲、乙、丙三位同學(xué)進(jìn)行了決賽.決賽規(guī)則:決賽共分場(chǎng),每場(chǎng)比賽的第一名、第二名、第三名的得分分別為,選手最后得分為各場(chǎng)得分之和,決賽結(jié)果是甲最后得分為分,乙和丙最后得分都為分,且乙在其中一場(chǎng)比賽中獲得第一名,現(xiàn)有下列說法:

①每場(chǎng)比賽第一名得分分;

②甲可能有一場(chǎng)比賽獲得第二名;

③乙有四場(chǎng)比賽獲得第三名;

④丙可能有一場(chǎng)比賽獲得第一名.

則以上說法中正確的序號(hào)是______.

查看答案和解析>>

同步練習(xí)冊(cè)答案