【題目】某游戲棋盤上標有第站,棋子開始位于第站,選手拋擲均勻骰子進行游戲,若擲出骰子向上的點數(shù)不大于,棋子向前跳出一站;否則,棋子向前跳出兩站,直到跳到第站或第站時,游戲結(jié)束.設(shè)游戲過程中棋子出現(xiàn)在第站的概率為.
(1)當游戲開始時,若拋擲均勻骰子次后,求棋子所走站數(shù)之和的分布列與數(shù)學期望;
(2)證明:;
(3)若最終棋子落在第站,則記選手落敗,若最終棋子落在第站,則記選手獲勝.請分析這個游戲是否公平.
【答案】(1)分布列見解析,4;(2)證明見解析;(3)不公平.
【解析】
(1)由題意可知,隨機變量的可能取值有根據(jù)獨立重復實驗的概率計算公式求出概率即可.
(2)當時,棋子要到第站,有兩種情況:由第站跳1站得到,其概率為;由第站跳2站得到,其概率為,從而,同時加上即可證出.
(3)由(2)可得,由,概率不相等,即可得出結(jié)論.
(1)由題意可知,隨機變量的可能取值有
,
.
所以,隨機變量的分布列如下表所示:
所以,;
(2)依題意,當時,棋子要到第站,有兩種情況:
由第站跳1站得到,其概率為;由第站跳2站得到,其概率為.
所以,.
同時加上得;
(3)依照(2)的分析,棋子落到第99站的概率為,,
由于若跳到第99站時,自動停止游戲,故有.
所以,即最終棋子落在第99站的概率大于落在第100站的概率,游戲不公平.
科目:高中數(shù)學 來源: 題型:
【題目】為提高產(chǎn)品質(zhì)量,某企業(yè)質(zhì)量管理部門經(jīng)常不定期地抽查產(chǎn)品進行檢測,現(xiàn)在某條生產(chǎn)線上隨機抽取100個產(chǎn)品進行相關(guān)數(shù)據(jù)的對比,并對每個產(chǎn)品進行綜合評分(滿分100分),將每個產(chǎn)品所得的綜合評分制成如圖所示的頻率分布直方圖.記綜合評分為80分及以上的產(chǎn)品為一等品.
(1)求圖中的值,并求綜合評分的中位數(shù);
(2)用樣本估計總體,以頻率作為概率,按分層抽樣的思想,先在該條生產(chǎn)線中隨機抽取5個產(chǎn)品,再從這5個產(chǎn)品中隨機抽取2個產(chǎn)品記錄有關(guān)數(shù)據(jù),求這2個產(chǎn)品中恰有一個一等品的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若橢圓的離心率等于,拋物線的焦點在橢圓的頂點上.
(1)求拋物線的方程;
(2)若過的直線與拋物線交于、兩點,又過、作拋物線的切線、,當時,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,以原點為圓心,橢圓的短半軸長為半徑的圓與直線相切.
(Ⅰ)求橢圓方程;
(Ⅱ)設(shè)為橢圓右頂點,過橢圓的右焦點的直線與橢圓交于,兩點(異于),直線,分別交直線于,兩點. 求證:,兩點的縱坐標之積為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,且acosC+ccosA=2bcosA.
(1)求角A的值;
(2)若, ,求△ABC的面積S.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如下圖所示,某窯洞窗口形狀上部是圓弧,下部是一個矩形,圓弧所在圓的圓心為O,經(jīng)測量米,米,,現(xiàn)根據(jù)需要把此窯洞窗口形狀改造為矩形,其中E,F在邊上,G,H在圓弧上.設(shè),矩形的面積為S.
(1)求矩形的面積S關(guān)于變量的函數(shù)關(guān)系式;
(2)求為何值時,矩形的面積S最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在直三棱柱ABC-A1B1C1中,D,E分別為AB,BC的中點,點F在側(cè)棱B1B上,且, .
求證:(1)直線DE平面A1C1F;
(2)平面B1DE⊥平面A1C1F.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com