【題目】在某大學聯(lián)盟的自主招生考試中,報考文史專業(yè)的考生參加了人文基礎學科考試科目語文數(shù)學的考試.某考場考生的兩科考試成績數(shù)據(jù)統(tǒng)計如下圖所示,本次考試中成績在內(nèi)的記為,其中語文科目成績在內(nèi)的考生有10人.

1)求該考場考生數(shù)學科目成績?yōu)?/span>的人數(shù);

2)已知參加本考場測試的考生中,恰有2人的兩科成績均為.在至少一科成績?yōu)?/span>的考生中,隨機抽取2人進行訪談,求這2人的兩科成績均為的概率.

【答案】(1)3;(2).

【解析】

試題分析:(1)頻率分布直方圖中面積表示頻率,設頻率=,為總人數(shù),所以,結合的頻率,;

(2)首先算出語文與數(shù)學中成績?yōu)?/span>的人數(shù),通過列舉的方法計算出選出的2人所有可能的情況及這兩人的兩科成績等級均為的情況;利用古典概型概率公式求出隨機抽取兩人進行訪談,這兩人的兩科成績等級均為的概率。

試題解析:(1)該考場的考生人數(shù)為10÷0.25=40人. 2分

數(shù)學科目成績?yōu)?/span>的人數(shù)為

40×(1-0.0025×10-0.015×10-0.0375×10×2)=40×0.075=3人. 6分

(2)語文和數(shù)學成績?yōu)锳的各有3人,其中有兩人的兩科成績均為,所以還有兩名同學只有一科成績?yōu)?/span>. 8分

設這四人為甲、乙、丙、丁,其中甲、乙的兩科成績均為,則在至少一科成績?yōu)?/span>的考生中,隨機抽取兩人進行訪談,基本事件為{甲,乙},{甲,丙},{甲,丁},{乙,丙},{乙,丁}, {丙,丁}共6個, 10分

隨機抽取兩人,這兩人的兩科成績均為為事件,則事件包含的事件有1個,則. 12分

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知圓的圓心在直線上,且與直線相切于點,

1)求圓方程;

2)是否存在過點的直線與圓交于兩點,且的面積是為坐標原點),若存在,求出直線的方程,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的焦點坐標為.

(1)求拋物線的標準方程;

(2)過點作互相垂直的直線,與拋物線分別相交于兩點和兩點,求四邊形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)的定義域是(0,+∞),且滿足f(xy)=f(x)+f(y),當x>1時,有f(x)>0.
(1)求f(1),判定并證明f(x)的單調性;
(2)若f(2)=1,解不等式f(﹣x)+f(3﹣x)≥﹣2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校上學期的期中考試后,為了了解某學科的考試成績,根據(jù)學生的考試成績利用分層抽樣抽取名學生的成績進行統(tǒng)計(所有學生成績均不低于分),得到學生成績的頻率分布直方圖如圖,回答下列問題;

(Ⅰ)根據(jù)頻率分布直方圖計算本次考試成績的平均分;

(Ⅱ)已知本次全?荚嚦煽冊內(nèi)的人數(shù)為,試確定全校的總人數(shù);

(Ⅲ)若本次考試抽查的人中考試成績在內(nèi)的有名女生,其余為男生,從中選擇兩名學生,求選擇一名男生與一名女生的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)f(x)=ax2+bx+1,a,b∈R,當x=﹣1時,函數(shù)f(x)取到最小值,且最小值為0;
(1)求f(x)解析式;
(2)關于x的方程f(x)=|x+1|﹣k+3恰有兩個不相等的實數(shù)解,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】運貨卡車以每小時x千米的速度勻速行駛130千米,按交通法規(guī)限制50≤x≤100(單位:千米/時).假設汽油的價格是每升2元,而汽車每小時耗油升,司機的工資是每小時14元.

(1)求這次行車總費用y關于x的表達式;

(2)當x為何值時,這次行車的總費用最低,并求出最低費用的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解某校高三學生的視力情況,隨機地抽查了該校100名高三學生的視力情況,得到頻率分布直方圖如下圖,由于不慎將部分數(shù)據(jù)丟失,但知道前4組的頻數(shù)成等比數(shù)列,后6組的頻數(shù)成等差數(shù)列,設最大頻率為a,視力在4.65.0之間的學生數(shù)為b,則a,b的值分別為 (   )

A. 0.27,78 B. 0.27,83 C. 2.7,78 D. 2.7,83

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù).

(1)當時,求的單調區(qū)間;

(2)當時, 恒成立,求的取值范圍;

(3)求證:當時, .

查看答案和解析>>

同步練習冊答案