【題目】已知圓的圓心在直線上,且與直線相切于點(diǎn),
(1)求圓方程;
(2)是否存在過點(diǎn)的直線與圓交于兩點(diǎn),且的面積是(為坐標(biāo)原點(diǎn)),若存在,求出直線的方程,若不存在,請說明理由.
【答案】(1);(2).
【解析】試題分析:(1)過切點(diǎn)且與垂直的直線為,與直線聯(lián)立,解得圓心為,由此能求出圓的半徑,從而可求圓的方程;(2)當(dāng)斜率不存在時,直線方程為,滿足題意;當(dāng)斜率存在時,設(shè)直線的方程為,由點(diǎn)到直線距離公式結(jié)合已知條件推導(dǎo)出不存在這樣的實數(shù),從而所求的直線方程為.
試題解析:(1)設(shè)圓心坐標(biāo)為,則圓的方程為:,又與相切,則有,解得:,,所以圓的方程為:;
(2)由題意得:當(dāng)存在時,設(shè)直線,設(shè)圓心到直線的距離為,
則有,進(jìn)而可得:
化簡得:,無解;
當(dāng)不存在時,,則圓心到直線的距離,那么,,滿足題意,所以直線的方程為:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)為實數(shù),函數(shù), .
(1)求的單調(diào)區(qū)間與極值;
(2)求證:當(dāng)且時, .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖:在正方體ABCD﹣A1B1C1D1中,E為棱DD1的中點(diǎn)
(1)求證:BD1∥平面AEC
(2)求證:AC⊥BD1 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修44:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,已知直線l1: (, ),拋物線C: (t為參數(shù)).以原點(diǎn)為極點(diǎn), 軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(Ⅰ)求直線l1 和拋物線C的極坐標(biāo)方程;
(Ⅱ)若直線l1 和拋物線C相交于點(diǎn)A(異于原點(diǎn)O),過原點(diǎn)作與l1垂直的直線l2,l2和拋物線C相交于點(diǎn)B(異于原點(diǎn)O),求△OAB的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,以為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系.若直線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為,將曲線上所有點(diǎn)的橫坐標(biāo)縮短為原來的一半,縱坐標(biāo)不變,然后再向右平移一個單位得到曲線.
(Ⅰ)求曲線的直角坐標(biāo)方程;
(Ⅱ)已知直線與曲線交于兩點(diǎn),點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a<1,集合A={x|x<a﹣2或x>﹣a},集合B={x|cos(xπ)=1},全集U=R.
(1)當(dāng)a=0時,求(UA)∩B;
(2)若(UA)∩B恰有2個元素,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓的圓心坐標(biāo),直線:被圓截得弦長為。
(Ⅰ)求圓的方程;
(Ⅱ)從圓外一點(diǎn)向圓引切線,求切線方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)且;
(1)求的值;
(2)過是否存在既是曲線的切線,又是曲線的切線?如果存在,求出直線方程;若果不存在請說明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某大學(xué)聯(lián)盟的自主招生考試中,報考文史專業(yè)的考生參加了人文基礎(chǔ)學(xué)科考試科目“語文”和“數(shù)學(xué)”的考試.某考場考生的兩科考試成績數(shù)據(jù)統(tǒng)計如下圖所示,本次考試中成績在內(nèi)的記為,其中“語文”科目成績在內(nèi)的考生有10人.
(1)求該考場考生數(shù)學(xué)科目成績?yōu)?/span>的人數(shù);
(2)已知參加本考場測試的考生中,恰有2人的兩科成績均為.在至少一科成績?yōu)?/span>的考生中,隨機(jī)抽取2人進(jìn)行訪談,求這2人的兩科成績均為的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com