【題目】已知函數(shù)f(x)的定義域是(0,+∞),且滿足f(xy)=f(x)+f(y),當(dāng)x>1時(shí),有f(x)>0.
(1)求f(1),判定并證明f(x)的單調(diào)性;
(2)若f(2)=1,解不等式f(﹣x)+f(3﹣x)≥﹣2.
【答案】
(1)解:令x=y=1,則f(1)=f(1)+f(1),解得f(1)=0.
f(x)在(0,+∞)上的是增函數(shù),
設(shè)x1,x2∈(0,+∞),且x1>x2,則 >1,
∴f( )>0,
∴f(x1)﹣f(x2)=f(x2 )﹣f(x2)=f( )>0,
即f(x1)>f(x2),
∴f(x)在(0,+∞)上的是增函數(shù)
(2)解:∵f(2)=1,∴f(﹣x)+f(3﹣x)≥﹣2,
可化為f(﹣x)+f(3﹣x)≥﹣2f(2).
∴f(﹣x)+f(2)+f(3﹣x)+f(2)≥0,
∴f(﹣2x)+f(6﹣2x)≥f(1),
∴f[﹣2x(6﹣2x)]≥f(1),
∴ ,
∴x≤ .
∴不等式的解集為{x|x≤ }
【解析】(1)利用賦值法進(jìn)行求f(1)的值; 根據(jù)函數(shù)的單調(diào)性的定義判斷f(x)在(0,+∞)上的單調(diào)性,并證明.(2)根據(jù)函數(shù)單調(diào)性的性質(zhì)解不等式即可.
【考點(diǎn)精析】本題主要考查了函數(shù)單調(diào)性的判斷方法的相關(guān)知識(shí)點(diǎn),需要掌握單調(diào)性的判定法:①設(shè)x1,x2是所研究區(qū)間內(nèi)任兩個(gè)自變量,且x1<x2;②判定f(x1)與f(x2)的大。虎圩鞑畋容^或作商比較才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修44:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,已知直線l1: (, ),拋物線C: (t為參數(shù)).以原點(diǎn)為極點(diǎn), 軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(Ⅰ)求直線l1 和拋物線C的極坐標(biāo)方程;
(Ⅱ)若直線l1 和拋物線C相交于點(diǎn)A(異于原點(diǎn)O),過原點(diǎn)作與l1垂直的直線l2,l2和拋物線C相交于點(diǎn)B(異于原點(diǎn)O),求△OAB的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)且;
(1)求的值;
(2)過是否存在既是曲線的切線,又是曲線的切線?如果存在,求出直線方程;若果不存在請(qǐng)說明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2017年某市街頭開始興起“mobike”、“ofo”等共享單車,這樣的共享單車為很多市民解決了最后一公里的出行難題.然而,這種模式也遇到了一些讓人尷尬的問題,比如亂停亂放,或?qū)⒐蚕韱诬囌紴椤八接小钡龋疄榇,某機(jī)構(gòu)就是否支持發(fā)展共享單車隨機(jī)調(diào)查了50人,他們年齡的分布及支持發(fā)展共享單車的人數(shù)統(tǒng)計(jì)如下表:
年齡 | ||||||
受訪人數(shù) | 5 | 6 | 15 | 9 | 10 | 5 |
支持發(fā)展共享單車人數(shù) | 4 | 5 | 12 | 9 | 7 | 3 |
(Ⅰ)由以上統(tǒng)計(jì)數(shù)據(jù)填寫下面的列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過0.1的前提下,認(rèn)為年齡與是否支持發(fā)展共享單車有關(guān)系:
年齡低于35歲 | 年齡不低于35歲 | 合計(jì) | |
支持 | |||
不支持 | |||
合計(jì) |
(Ⅱ)若對(duì)年齡在的被調(diào)查人中隨機(jī)選取兩人,對(duì)年齡在的被調(diào)查人中隨機(jī)選取一人進(jìn)行調(diào)查,求選中的3人中支持發(fā)展共享單車的人數(shù)為2人的概率.
參考數(shù)據(jù):
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式: ,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠每日生產(chǎn)一種大型產(chǎn)品1件,每件產(chǎn)品的投入成本為2000元.產(chǎn)品質(zhì)量為一等品的概率為,二等品的概率為,每件一等品的出廠價(jià)為10000元,每件二等品的出廠價(jià)為8000元.若產(chǎn)品質(zhì)量不能達(dá)到一等品或二等品,除成本不能收回外,沒生產(chǎn)一件產(chǎn)品還會(huì)帶來1000元的損失.
(1)求在連續(xù)生產(chǎn)3天中,恰有一天生產(chǎn)的兩件產(chǎn)品都為一等品的的概率;
(2)已知該廠某日生產(chǎn)的2件產(chǎn)品中有一件為一等品,求另一件也為一等品的概率;
(3)求該廠每日生產(chǎn)該種產(chǎn)品所獲得的利潤(元)的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,平面ABDE⊥平面ABC,△ABC是等腰直角三角形,AC=BC=4,四邊形ABDE是直角梯形,BD∥AE,BD⊥BA,BD=AE=2,O,M分別為CE,AB的中點(diǎn).
(1)求證:OD∥平面ABC;
(2)求直線CD和平面ODM所成角的正弦值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某大學(xué)聯(lián)盟的自主招生考試中,報(bào)考文史專業(yè)的考生參加了人文基礎(chǔ)學(xué)科考試科目“語文”和“數(shù)學(xué)”的考試.某考場(chǎng)考生的兩科考試成績(jī)數(shù)據(jù)統(tǒng)計(jì)如下圖所示,本次考試中成績(jī)?cè)?/span>內(nèi)的記為,其中“語文”科目成績(jī)?cè)?/span>內(nèi)的考生有10人.
(1)求該考場(chǎng)考生數(shù)學(xué)科目成績(jī)?yōu)?/span>的人數(shù);
(2)已知參加本考場(chǎng)測(cè)試的考生中,恰有2人的兩科成績(jī)均為.在至少一科成績(jī)?yōu)?/span>的考生中,隨機(jī)抽取2人進(jìn)行訪談,求這2人的兩科成績(jī)均為的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列給出四組函數(shù),表示同一函數(shù)的是( )
A.f(x)=x﹣1,g(x)= ﹣1
B.f(x)=2x+1,g(x)=2x﹣1
C.f(x)=|x|,g(x)=
D.f(x)=1,g(x)=x0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)= (a,b為常數(shù))是定義在(﹣1,1)上的奇函數(shù),且f( )=
(1)求函數(shù)f(x)的解析式;
(2)用定義證明f(x)在(﹣1,1)上是增函數(shù)并求值域;
(3)求不等式f(2t﹣1)+f(t)<0的解集.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com