精英家教網 > 高中數學 > 題目詳情

【題目】隨著網絡時代的進步,流量成為手機的附帶品,人們可以利用手機隨時隨地的瀏覽網頁,聊天,看視頻,因此,社會上產生了很多低頭族.某研究人員對該地區(qū)18∽50歲的5000名居民在月流量的使用情況上做出調查,所得結果統(tǒng)計如下圖所示:

(Ⅰ)以頻率估計概率,若在該地區(qū)任取3位居民,其中恰有位居民的月流量的使用情況

在300M∽400M之間,求的期望;

(Ⅱ)求被抽查的居民使用流量的平均值;

(Ⅲ)經過數據分析,在一定的范圍內,流量套餐的打折情況與其日銷售份數成線性相關

關系,該研究人員將流量套餐的打折情況與其日銷售份數的結果統(tǒng)計如下表所示:

折扣

1

2

3

4

5

銷售份數

50

85

115

140

160

試建立關于的的回歸方程.

附注:回歸方程中斜率和截距的最小二乘估計公式分別為:

【答案】(Ⅰ)0.75;(Ⅱ)369M;(Ⅲ) .

【解析】試題分析:I直接根據二項分布的期望公式求解即可;(II根據頻率分布直方圖中數據,每組數據中間值與縱坐標的乘積之和即是被抽查的居民使用流量的平均值;()先根據平均值公式求出樣本中心點的坐標,利用公式求出樣本中心點坐標代入回歸方程可得,從而可得結果.

試題解析(Ⅰ)依題意, ,故

(Ⅱ)依題意,所求平均數為故所用流量的平均值為;

(Ⅲ)由題意可知,

,

,

所以, 關于的回歸方程為: .

【方法點晴】本題主要考查二項分布的期望公式、直方圖的應用和線性回歸方程的求法,屬于難題.求回歸直線方程的步驟:①依據樣本數據畫出散點圖,確定兩個變量具有線性相關關系;②計算的值;③計算回歸系數;④寫出回歸直線方程為; 回歸直線過樣本點中心是一條重要性質,利用線性回歸方程可以估計總體,幫助我們分析兩個變量的變化趨勢.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,已知曲線C1, 曲線C2,以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系. 并在兩種坐標系中取相同的單位長度。

(1)寫出曲線C1,C2的極坐標方程;

(2)在極坐標系中,已知點A是射線l:與C1的交點,點B是l與C2的異于極點的交點,當在區(qū)間上變化時,求的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=1,AD= ,P矩形內的一點,且AP= ,若 ,(λ,μ∈R),則λ+ μ的最大值為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】,其中是不等于零的常數。

(1)寫出的定義域;

(2)求的單調遞增區(qū)間;

(3)已知函數,定義:,.其中,表示函數上的最小值,表示函數上的最大值.例如:,則,,,當時,設,不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,輸出的結果是(
A.﹣2
B.
C.
D.3

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖ABCD是平面四邊形,∠ADB=∠BCD=90°,AB=4,BD=2.
(Ⅰ)若BC=1,求AC的長;
(Ⅱ)若∠ACD=30°,求tan∠BDC的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設0<a<1,已知函數f(x)= ,若對任意b∈(0, ),函數g(x)=f(x)﹣b至少有兩個零點,則a的取值范圍是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某家具城進行促銷活動,促銷方案是:顧客每消費滿1000元,便可以獲得獎券一張,每張獎券中獎的概率為,若中獎,則家具城返還顧客現金1000元,某顧客購買一張價格為3400元的餐桌,得到3張獎券,設該顧客購買餐桌的實際支出為(元);

(1)求的所有可能取值;

(2)求的分布列和數學期望;

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列命題中,假命題為(  )

A. 存在四邊相等的四邊形不是正方形

B. z1,z2C,z1z2為實數的充分必要條件是z1,z2互為共軛復數

C. xyR,且xy>2,則x,y至少有一個大于1

D. 對于任意nN,都是偶數

查看答案和解析>>

同步練習冊答案