【題目】某家具城進(jìn)行促銷活動(dòng),促銷方案是:顧客每消費(fèi)滿1000元,便可以獲得獎(jiǎng)券一張,每張獎(jiǎng)券中獎(jiǎng)的概率為,若中獎(jiǎng),則家具城返還顧客現(xiàn)金1000元,某顧客購(gòu)買一張價(jià)格為3400元的餐桌,得到3張獎(jiǎng)券,設(shè)該顧客購(gòu)買餐桌的實(shí)際支出為(元);
(1)求的所有可能取值;
(2)求的分布列和數(shù)學(xué)期望;
【答案】(1)見解析;(2)見解析
【解析】
(1)3張獎(jiǎng)券中獎(jiǎng)的可能情況為:沒中獎(jiǎng)、中獎(jiǎng)1次、中獎(jiǎng)2次和中獎(jiǎng)3次,故可求出的所有可能取值;
(2)根據(jù)的所有可能取值,求出相應(yīng)的概率,即可得到概率分布列,從而可求數(shù)學(xué)期望.
解:(1)3張獎(jiǎng)券中獎(jiǎng)的可能情況為:沒中獎(jiǎng)、中獎(jiǎng)1次、中獎(jiǎng)2次和中獎(jiǎng)3次,
的所有可能取值為3400,2400,1400,400 ;
(2)
的分布列為
3400 | 2400 | 1400 | 400 | |
P |
數(shù)學(xué)期望
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sinxcosx﹣ x.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)當(dāng)x∈[0, ]時(shí),求f(x)的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著網(wǎng)絡(luò)時(shí)代的進(jìn)步,流量成為手機(jī)的附帶品,人們可以利用手機(jī)隨時(shí)隨地的瀏覽網(wǎng)頁(yè),聊天,看視頻,因此,社會(huì)上產(chǎn)生了很多低頭族.某研究人員對(duì)該地區(qū)18∽50歲的5000名居民在月流量的使用情況上做出調(diào)查,所得結(jié)果統(tǒng)計(jì)如下圖所示:
(Ⅰ)以頻率估計(jì)概率,若在該地區(qū)任取3位居民,其中恰有位居民的月流量的使用情況
在300M∽400M之間,求的期望;
(Ⅱ)求被抽查的居民使用流量的平均值;
(Ⅲ)經(jīng)過數(shù)據(jù)分析,在一定的范圍內(nèi),流量套餐的打折情況與其日銷售份數(shù)成線性相關(guān)
關(guān)系,該研究人員將流量套餐的打折情況與其日銷售份數(shù)的結(jié)果統(tǒng)計(jì)如下表所示:
折扣 | 1折 | 2折 | 3折 | 4折 | 5折 |
銷售份數(shù) | 50 | 85 | 115 | 140 | 160 |
試建立關(guān)于的的回歸方程.
附注:回歸方程中斜率和截距的最小二乘估計(jì)公式分別為:
,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}的前n項(xiàng)和為Sn,a3=7,S9=27.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=|an|,求數(shù)列{bn}的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中正確的是( )
A.若ξ服從正態(tài)分布N(0,2),且P(ξ>2)=0.4,則P(0<ξ<2)=0.2
B.x=1是x2﹣x=0的必要不充分條件
C.直線ax+y+2=0與ax﹣y+4=0垂直的充要條件為a=±1
D.“若xy=0,則x=0或y=0”的逆否命題為“若x≠0或y≠0,則xy≠0”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,其中左焦點(diǎn)(-2,0).
(1) 求橢圓C的方程;
(2) 若直線y=x+m與橢圓C交于不同的兩點(diǎn)A,B,且線段AB的中點(diǎn)M在圓x2+y2=1上,求m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知{an}是遞增的等差數(shù)列,且滿足a2a4=21,a1+a5=10.
(1)求{an}的通項(xiàng)公式;
(2)若數(shù)列{cn}前n項(xiàng)和Cn=an+1,數(shù)列{bn}滿足bn=2ncn(n∈N*),求{bn}的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】假設(shè)關(guān)于某種設(shè)備的使用年限 (年)與所支出的維修費(fèi)用 (萬元)有如下統(tǒng)計(jì)資料:
x | 2 | 3 | 4 | 5 | 6 |
y | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
已知, .
,
(1)求, ;
(2)若 與具有線性相關(guān)關(guān)系,求出線性回歸方程;
(3)估計(jì)使用年限為10年時(shí),維修費(fèi)用約是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com