已知函數(shù)f(x+
1
x
)=x2+(
1
x
2(x>0),求函數(shù)f(x).
考點(diǎn):函數(shù)解析式的求解及常用方法
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:當(dāng)x>0時(shí),求出x+
1
x
的取值范圍,利用x+
1
x
與x2+(
1
x
2之間的關(guān)系,求出函數(shù)f(x)的解析式.
解答: 解:∵x>0時(shí),x+
1
x
≥2
x•
1
x
=2,
且函數(shù)f(x+
1
x
)=x2+(
1
x
2=(x+
1
x
)
2
-2;
設(shè)t=x+
1
x
,(t≥2);
∴f(t)=t2-2;
即函數(shù)f(x)=x2-2(其中x≥2).
點(diǎn)評(píng):本題考查了求函數(shù)解析式的問題,解題時(shí)應(yīng)利用x+
1
x
與x2+(
1
x
2之間的關(guān)系,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下面是一些命題的敘述語,其中命題和敘述方法都正確的是
 

(1)∵A∈α,B∈α,∴AB∈α.
(2)∵a∈α,α∈β,∴α∩β=a.
(3)∵A∈a,a?α,∴A∈α.
(4)∵A?a,a?α,∴A?α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=2
3
sinx•cosx+2cos2x,在△ABC中,角A、B、C所對(duì)的邊分別為a、b、c,且滿足b2+c2-a2+bc=0
(1)求角A的值;
(2)求f(A)的值;
(3)求f(B)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實(shí)數(shù)x,y滿足不等式:
x-y+2≥0
1≤x≤2
y≥2

(1)求
y
x
的取值范圍;
(2)不等式xy≤ax2+2y2恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三棱柱ABC-A1B1C1中,∠BCA=90°,AA1=AC=BC=2,A1在底面ABC上的射影恰為AC的中點(diǎn)D.
(Ⅰ)求證:AC1⊥BA1
(Ⅱ)求A-A1B-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正方體ABCD-A1B1C1D1的棱長(zhǎng)為1,P為線段BC的中點(diǎn),Q為線段CC1上的動(dòng)點(diǎn),過A,P,Q的平面截該正方體所得的截面記為S,則所有正確的命題是
 

①當(dāng)0<CQ<
1
2
時(shí),S為四邊形;
②當(dāng)CQ=
1
2
時(shí),S為等腰梯形;
③當(dāng)CQ=
3
4
時(shí),S與C1D1的交點(diǎn)R滿足RD1=
1
3
;
④當(dāng)
3
4
<CQ<1時(shí),S為五邊形;
⑤當(dāng)CQ=1時(shí),S的面積為
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某單位為了了解用電量y度與氣溫x℃之間的關(guān)系,隨機(jī)統(tǒng)計(jì)了某4天的用電量與當(dāng)天氣溫,并制作了對(duì)照表:
x 18 13 10 -1
y 25 34 39 62
由表中數(shù)據(jù)得線性回歸方程y=-2x+a,預(yù)測(cè)當(dāng)氣溫為-4℃時(shí),用電量的度數(shù)約為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的兩條漸近線與拋物線y2=4x的準(zhǔn)線相交于A,B兩點(diǎn).若△AOB的面積為2,則雙曲線的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x與y之間的關(guān)系如下表:
X 1 3 5
y 4 8 15
則y與x的線性回歸方程為y=bx+a必經(jīng)過點(diǎn)(  )
A、(3,7)
B、(3,9)
C、(3.5,8)
D、(4,9)

查看答案和解析>>

同步練習(xí)冊(cè)答案