【題目】已知函數(shù),

)若函數(shù)的最小值為,求的值.

)證明:

【答案】1;(2)證明見解析.

【解析】

試題(1)由題意得,的最小值問題,需要借助于導數(shù),對比極值與端點值確定,而由最值也可確定出未知量;(2)借助第一問,將問題轉化成最常見的形式:.

試題解析:(1的定義域為,且.,則,于是上單調遞增,故無最小值,不合題意,若,則當時,;時,.上單調遞減,在上單調遞增.于是當時,取得最小值.由已知得, 解得.綜上,.

2下面先證當時,.因為, 所以只要證.由(1)可知, 于是只要證,即只要證, ,則,時,, 所以單調遞增,所以當時,,即,故當時,不等式成立 .② 時,由(1)知, 于是有,即,所以, ,又因為, 所以,所以

,綜上,不等式

成立.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,,,,且

(1)證明:平面;

(2)在線段上,是否存在一點,使得二面角的大小為?如果存在,求的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐的底面是平行四邊形,,的中點,.

(1)求證:平面;

(2)若,,點在側棱上,且,二面角的大小為,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】即將于年夏季畢業(yè)的某大學生準備到貴州非私營單位求職,為了了解工資待遇情況,他在貴州省統(tǒng)計局的官網上,查詢到年到年非私營單位在崗職工的年平均工資近似值(單位:萬元),如下表:

年份

序號

年平均工資

(1)請根據(jù)上表的數(shù)據(jù),利用線性回歸模型擬合思想,求關于的線性回歸方程,的計算結果根據(jù)四舍五入精確到小數(shù)點后第二位);

(2)如果畢業(yè)生對年平均工資的期望值為8.5萬元,請利用(1)的結論,預測年的非私營單位在崗職工的年平均工資(單位:萬元。計算結果根據(jù)四舍五入精確到小數(shù)點后第二位),并判斷年平均工資能否達到他的期望.

參考數(shù)據(jù):,,

附:對于一組具有線性相關的數(shù)據(jù):,,

其回歸直線的斜率和截距的最小二乘法估計分別為

,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了調查高中生的數(shù)學成績與學生自主學習時間之間的相關關系,新苗中學數(shù)學教師對新入學的名學生進行了跟蹤調查,其中每周自主做數(shù)學題的時間不少于小時的有人,余下的人中,在高三模擬考試中數(shù)學成績不足分的占,統(tǒng)計成績后,得到如下的列聯(lián)表:

分數(shù)大于等于

分數(shù)不足

合計

周做題時間不少于小時

4

19

周做題時間不足小時

合計

45

)請完成上面的列聯(lián)表,并判斷能否在犯錯誤的概率不超過的前提下認為“高中生的數(shù)學成績與學生自主學習時間有關”.

)(i)按照分層抽樣的方法,在上述樣本中,從分數(shù)大于等于分和分數(shù)不足分的兩組學生中抽取名學生,設抽到的不足分且周做題時間不足小時的人數(shù)為,求的分布列(概率用組合數(shù)算式表示).

(ii)若將頻率視為概率,從全校大于等于分的學生中隨機抽取人,求這些人中周做題時間不少于小時的人數(shù)的期望和方差.

附:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】軸交于、兩點(點在點的左側),是分別過、點的圓的切線,過此圓上的另一個點點是圓上任一不與、重合的動點)作此圓的切線,分別交、兩點,且、兩直線交于點

)設切點坐標為,求證:切線的方程為

設點坐標為,試寫出的關系表達式(寫出詳細推理與計算過程)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是由容量為100的樣本得到的頻率分布直方圖.其中前4組的頻率成等比數(shù)列,后6組的頻數(shù)成等差數(shù)列,設最大頻率為a,在之間的數(shù)據(jù)個數(shù)為b,則a,b的值分別為(

A.,78

B.,83

C.,78

D.83

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知某單位全體員工年齡頻率分布表為:

年齡(歲)

[25,30

[3035

[35,40

[40,45

[4550

[50,55

合計

人數(shù)(人)

6

18

50

31

19

16

140

經統(tǒng)計,該單位35歲以下的青年職工中,男職工和女職工人數(shù)相等,且男職工的年齡頻率分布直方圖和如圖所示:

(Ⅰ)求a;

(Ⅱ)求該單位男女職工的比例;

(Ⅲ)若從年齡在[25,30)歲的職工中隨機抽取兩人參加某項活動,求恰好抽取一名男職工和一名女職工的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知為拋物線的焦點,過的動直線交拋物線兩點.當直線與軸垂直時,

(1)求拋物線的方程;

(2)設直線的斜率為1且與拋物線的準線相交于點,拋物線上存在點使得直線,的斜率成等差數(shù)列,求點的坐標.

查看答案和解析>>

同步練習冊答案