【題目】3333的方格表中毎個格染三種顏色之一,使得每種顏色的格的個數(shù)相等.若相鄰兩格的顏色不同,則稱其公共邊為分隔邊".試求分隔邊條數(shù)的最小值

【答案】56

【解析】

記分隔邊的條數(shù)為L。首先,將方格表按圖分成三個區(qū)域,分別染成三種顏色,粗線上均為分隔邊。將方格表的行從上至下依次記為,列從左至右依次記為。行中方格出現(xiàn)的顏色數(shù)記為,列中方格出現(xiàn)的顏色個數(shù)記為。三種顏色分別記為,對于一種顏色為含有色方格的行數(shù)與列數(shù)之和。

定義 類似地定義.計算得到

,再證明,再證明対任意均有最后求出分隔邊條數(shù)的最小值.

記分隔邊的條數(shù)為L。首先,將方格表按圖分成三個區(qū)域,分別染成三種顏色,粗線上均為分隔邊。

此時,共有56條分隔邊,即L=56。

其次證明:L≥56。

將方格表的行從上至下依次記為,列從左至右依次記為。行中方格出現(xiàn)的顏色數(shù)記為,列中方格出現(xiàn)的顏色個數(shù)記為。三種顏色分別記為,對于一種顏色為含有色方格的行數(shù)與列數(shù)之和。

定義

類似地定義.

所以

由于染色的格有個,設含有色方格的行有a個、列有b個,則色的方格一定在這a行和b列的交叉方格中。

從而,

所以

由于在行中有種顏色的方格,于是,至少有條分隔邊。

類似地,在列中,至少有條分隔邊。

下面分兩種情形討論。

1.有一行或一列所有方格同色。

不妨設有一行均為色則方格表的33列中均含有色的方格,又色方格有363個,故至少有11行含有色方格.于是,

由式①、③、④得

(2)沒有一行也沒有一列的所有方格同色.

則対任意均有

從而,由式②知;

綜上,分割邊條數(shù)的最小值為56.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,AB為圓O的直徑,點E、F在圓OABEF,矩形ABCD所在平面和圓O所在平面垂直,已知AB=2,EF=1.

(I)求證平面DAF⊥平面CBF;

(II)若BC=1,求四棱錐FABCD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,已知以M點為圓心的圓及其上一點.

1)設圓Ny軸相切,與圓M外切,且圓心在直線上,求圓N的標準方程;

2)設平行于OA的直線l與圓M相交于B,C兩點且,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著資本市場的強勢進入,互聯(lián)網(wǎng)共享單車“忽如一夜春風來”,遍布了一二線城市的大街小巷.為了解共享單車在市的使用情況,某調(diào)查機構借助網(wǎng)絡進行了問卷調(diào)查,并從參與調(diào)查的網(wǎng)友中抽取了200人進行抽樣分析,得到表格:(單位:人)

經(jīng)常使用

偶爾或不用

合計

30歲及以下

70

30

100

30歲以上

60

40

100

合計

130

70

200

(1)根據(jù)以上數(shù)據(jù),能否在犯錯誤的概率不超過0.15的前提下認為市使用共享單車情況與年齡有關?

(2)現(xiàn)從所抽取的30歲以上的網(wǎng)友中利用分層抽樣的方法再抽取5人.

(i)分別求這5人中經(jīng)常使用、偶爾或不用共享單車的人數(shù);

(ii)從這5人中,再隨機選出2人贈送一件禮品,求選出的2人中至少有1人經(jīng)常使用共享單車的概率.

參考公式: ,其中.

參考數(shù)據(jù):

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖1,在平面多邊形中,四邊形為正方形, , ,沿著將圖形折成圖2,其中, 的中點.

(1)求證: ;

(2)求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,過函數(shù)的圖象上的兩點,軸的垂線,垂足分別為,,線段與函數(shù)的圖象交于點,且軸平行.

1)當,時,求實數(shù)的值;

(2)當時,求的最小值;

(3)已知,,若,為區(qū)間內(nèi)任意兩個變量,且,

求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2022年北京冬奧會的申辦成功與“3億人上冰雪”口號的提出,將冰雪這個冷項目迅速炒“熱”.北京某綜合大學計劃在一年級開設冰球課程,為了解學生對冰球運動的興趣,隨機從該校一年級學生中抽取了100人進行調(diào)查,其中女生中對冰球運動有興趣的占,而男生有10人表示對冰球運動沒有興趣額.

(1)完成列聯(lián)表,并回答能否有的把握認為“對冰球是否有興趣與性別有關”?

(2)若將頻率視為概率,現(xiàn)再從該校一年級全體學生中,采用隨機抽樣的方法每次抽取1名學生,抽取5次,記被抽取的5名學生中對冰球有興趣的人數(shù)為,若每次抽取的結果是相互獨立的,求的分布列,期望和方差.

附表:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】大學生小王自主創(chuàng)業(yè),在鄉(xiāng)下承包了一塊耕地種植某種水果,每季投入2萬元,根據(jù)以往的經(jīng)驗,每季收獲的此種水果能全部售完,且水果的市場價格和這塊地上的產(chǎn)量具有隨機性,互不影響,具體情況如表:

(Ⅰ)設表示在這塊地種植此水果一季的利潤,求的分布列及期望;

(Ⅱ)在銷售收入超過5萬元的情況下,利潤超過5萬元的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某位同學進行寒假社會實踐活動,為了對白天平均氣溫與某奶茶店的某種飲料銷量之間的關系進行分析研究,他分別記錄了111日至115日的白天平均氣溫與該小賣部的這種飲料銷量(杯),得到如下數(shù)據(jù):

日期

111

112

113

114

115

平均氣溫

9

10

12

11

8

銷量(杯)

23

25

30

26

21

1)若先從這五組數(shù)據(jù)中抽出2組,求抽出的2組數(shù)據(jù)恰好是相鄰2天數(shù)據(jù)的概率;

2)請根據(jù)所給五組數(shù)據(jù),求出關于的線性回歸方程;

3)根據(jù)(1)中所得的線性回歸方程,若天氣預報116日的白天平均氣溫,請預測該奶茶店這種飲料的銷量.

(參考公式:,

查看答案和解析>>

同步練習冊答案