【題目】已知正方形ABCD的頂點(diǎn)坐標(biāo)分別為A(0,1),B(2,0),C(3,2).
(1)求CD邊所在直線(xiàn)的方程;
(2)求以AC為直徑的圓M的標(biāo)準(zhǔn)方程.

【答案】
(1)解:由題意kAB=﹣

直線(xiàn)CD平行于AB,且過(guò)C(3,2),

所以直線(xiàn)CD的方程為y﹣2=﹣ (x﹣3),即x+2y﹣7=0


(2)解:圓心顯然應(yīng)在AC的中點(diǎn)處,記為M( , ),…

R=MA= = ,

所以圓M的標(biāo)準(zhǔn)方程為(x﹣ 2+(y﹣ 2=


【解析】(1)求出AB的斜率,利用點(diǎn)斜式求CD邊所在直線(xiàn)的方程;(2)圓心顯然應(yīng)在AC的中點(diǎn)處,求出圓的半徑,即可求以AC為直徑的圓M的標(biāo)準(zhǔn)方程.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用圓的標(biāo)準(zhǔn)方程,掌握?qǐng)A的標(biāo)準(zhǔn)方程:;圓心為A(a,b),半徑為r的圓的方程即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知球內(nèi)接四棱錐的高為相交于,球的表面積為,若中點(diǎn).

(1)求證: 平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,直線(xiàn)的參數(shù)方程為為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系取相同的長(zhǎng)度單位,且以原點(diǎn)為極點(diǎn),以軸正半軸為極軸)中,圓的方程為.

(1)求圓的直角坐標(biāo)方程;

(2)設(shè)圓與直線(xiàn)交于點(diǎn),若點(diǎn)的坐標(biāo)為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,AE⊥DE,CD⊥平面ADE,AB⊥平面ADE,CD=DA=6,AB=2,DE=3.

(1)求到平面的距離

(2)在線(xiàn)段上是否存在一點(diǎn),使?若存在,求出的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)f(x)是定義在R上的增函數(shù),且對(duì)于任意的x都有f(﹣x)+f(x)=0恒成立,如果實(shí)數(shù)a,b滿(mǎn)足不等式組 ,那么a2+b2的取值范圍是(
A.[9,49]
B.(17,49]
C.[9,41]
D.(17,41]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,直線(xiàn)的參數(shù)方程為為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系取相同的長(zhǎng)度單位,且以原點(diǎn)為極點(diǎn),以軸正半軸為極軸)中,圓的方程為.

(1)求圓的直角坐標(biāo)方程;

(2)設(shè)圓與直線(xiàn)交于點(diǎn),若點(diǎn)的坐標(biāo)為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知向量 =(sinA,cosA), =(cosB,sinB), =sin2C且A、B、C分別為△ABC的三邊a,b,c所對(duì)的角.
(1)求角C的大小;
(2)若sinA,sinC,sinB成等比數(shù)列,且 =18,求c的值..

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) .

(1)若 ,求曲線(xiàn) 在點(diǎn) 處的切線(xiàn)方程;

(2)若 處取得極小值,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的兩個(gè)焦點(diǎn)與短軸的一個(gè)端點(diǎn)是直角三角形的三個(gè)頂點(diǎn),直線(xiàn) 與橢圓有且只有一個(gè)公共點(diǎn).

(Ⅰ)求橢圓的方程及點(diǎn)的坐標(biāo);

(Ⅱ)設(shè)是坐標(biāo)原點(diǎn),直線(xiàn)平行于,與橢圓交于不同的兩點(diǎn),且與直線(xiàn)交于點(diǎn),證明:存在常數(shù),使得,并求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案