【題目】如果存在1,2,...,n的一個排列使得都是完全平方數(shù),就稱n為“中數(shù)”那么,在集合{15,17,2006}中,是中數(shù)的元素共有______。

【答案】3

【解析】

(1)15是中數(shù).因為在表1的排列中,都是完全平方數(shù):

表1

k

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

K+

(2) 17是中數(shù).因為在表2的排列中,都是完全平方數(shù):

表2

k

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

3

7

6

5

4

10

2

17

16

15

14

13

12

11

1

9

8

K+

(3) 2006是中數(shù).因為可以通過如下的方式排列.使都是完全平方數(shù):對于k取可按(2)的方式與之對應;對于k取18,可使與之對應;對于k取19,20,...,2006,只需使依次取2006,2005,...,19與之對應排即可.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】

討論的單調(diào)區(qū)間;

時,上的最小值為,求上的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了堅決打贏新冠狀病毒的攻堅戰(zhàn),阻擊戰(zhàn),某小區(qū)對小區(qū)內(nèi)的名居民進行模排,各年齡段男、女生人數(shù)如下表.已知在小區(qū)的居民中隨機抽取名,抽到~歲女居民的概率是.現(xiàn)用分層抽樣的方法在全小區(qū)抽取名居民,則應在歲以上抽取的女居民人數(shù)為(

歲—

歲—

歲以上

女生

男生

<>

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓心在直線上的圓C經(jīng)過點,且與直線相切.

1)求過點P且被圓C截得的弦長等于4的直線方程;

2)過點P作兩條相異的直線分別與圓C交于A,B,若直線PA,PB的傾斜角互補,試判斷直線ABOP的位置關系(O為坐標原點),并證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,直線l與橢圓C交于A、B兩點,且

1)求橢圓C的方程;

2)若A、B兩點關于原點O的對稱點分別為,且,判斷四邊形是否存在內(nèi)切的定圓?若存在,請求出該內(nèi)切圓的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)判斷函數(shù)的奇偶性并證明;

2)用定義證明函數(shù)在區(qū)間上是單調(diào)遞增函數(shù):

3)求函數(shù)在區(qū)間上的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知圓心在直線上的圓經(jīng)過點,但不經(jīng)過坐標原點,并且直線與圓相交所得的弦長為4.

(1)求圓的一般方程;

(2)若從點發(fā)出的光線經(jīng)過軸反射,反射光線剛好通過圓的圓心,求反射光線所在的直線方程(用一般式表達).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,三國時代數(shù)學家趙爽在《周髀算經(jīng)》中利用弦圖,給出了勾股定理的絕妙證明.圖中包含四個全等的直角三角形及一個小正方形(陰影),設直角三角形有一內(nèi)角為,若向弦圖內(nèi)隨機拋擲500顆米粒(大小忽略不計,取),則落在小正方形(陰影)內(nèi)的米粒數(shù)大約為( )

A. 134 B. 67 C. 200 D. 250

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2018年8月教育部、國家衛(wèi)生健康委員會等八個部門聯(lián)合印發(fā)《綜合防控兒童青少年近視實話方案》中明確要求,為切實加強新時代兒童青少年近視防控工作,學校應嚴格組織全體學生每天上、下午各大做1次眼保健操.為了了解學校推廣眼保健操是否能有效預防近視,隨機從甲學校抽取了50名學生,再從乙學校選出與甲學校被抽取的50名學生視力情況一樣的50學生(期中甲學校每天安排學生做眼保健操,乙學校不安排做跟保健操),一段時間后檢測他們的視力情況并統(tǒng)計,若視力情況為1.0及以上,則認為該學生視力良好,否則認為該學生的視力一般,表1為甲學校視力情況的頻率分布表,表2為乙學校學生視力情況的頻率分布表,根據(jù)表格回答下列問題:

表1 甲學校學生視力情況的頻率分布表

視力情況

0.6

0.8

1.0

1.2

1.5

頻 數(shù)

1

1

15

15

18

表2 乙學校學生視力情況的頻率分布表

視力情況

0.5

0.6

0.8

1.0

1.2

1.5

頻 數(shù)

2

2

4

19

13

10

(1)求在甲學校的50名學生中隨機選擇1名同學,求其視力情況為良好的概率;

(2)根據(jù)表1,表2,對在學校推廣眼保健操的必要性進行分析;

(3)在乙學校視力情況一般的學生中選擇2人,了解其具體用眼習慣,求這兩人視力情況都為0.8的概率.

查看答案和解析>>

同步練習冊答案