【題目】
設(shè)平面上向量=(cosα,sinα) (0°≤α<360°),=(-,).
(1)試證:向量與垂直;
(2)當(dāng)兩個(gè)向量與的模相等時(shí),求角α.
【答案】(1)見(jiàn)解析;(2)α=30°,或α=210°.
【解析】
本試題主要是考查了向量的數(shù)量積的運(yùn)算,以及向量的數(shù)量積的性質(zhì)的運(yùn)用,以及三角函數(shù)的變形運(yùn)用,和三角方程的求解的綜合試題.
(1)根據(jù)已知要證明向量與垂直,則利用數(shù)量積為零即可.
(2)由||=1,||=1,且|+|=|-|,利用模相等,則平方后相等來(lái)解得關(guān)于角α的方程,然后解三角方程得到角的值.
解: (1)(+)·(-)=(cosα-,sinα+)·(cosα+,sinα-)
=(cosα-)(cosα+)+(sinα+)(sinα-)
=cos2α-+sin2α-=0,
∴⊥. ……4分
(2)由||=1,||=1,且|+|=|-|,平方得(+)2=(-)2,
整理得22-22+4=0①.
∵||=1,||=1,∴①式化簡(jiǎn)得·=0,
·=(cosα,sinα)·(-,)=-cosα+sinα=0,即cos(60°+α)=0.
∵0°≤α<360°,∴可得α=30°,或α=210°
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,四邊形EFGH為空間四邊形ABCD的一個(gè)截面,若截面為平行四邊形.
(1)求證:AB∥平面EFGH
(2)若AB=4,CD=6,求四邊形EFGH周長(zhǎng)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知三棱錐S-ABC的底面是以AB為斜邊的等腰直角三角形,SA=SB= SC=2,AB=2,設(shè)S、A、B、C四點(diǎn)均在以O為球心的某個(gè)球面上。則點(diǎn)O到平面ABC的距離為________________。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知點(diǎn),拋物線(xiàn)的焦點(diǎn)為,設(shè)為拋物線(xiàn)上異于頂點(diǎn)的動(dòng)點(diǎn),直線(xiàn)交拋物線(xiàn)于另一點(diǎn),連結(jié),,并延長(zhǎng),分別交拋物線(xiàn)與點(diǎn),.
(1)當(dāng)軸時(shí),求直線(xiàn)與軸的交點(diǎn)的坐標(biāo);
(2)設(shè)直線(xiàn),的斜率分別為,,試探索是否為定值?若是,求出此定值;若不是,試說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方體的棱長(zhǎng)為1,E,F分別為棱,AB上的點(diǎn),下列說(shuō)法正確的是________.(填上所有正確命題的序號(hào))
①平面
②在平面內(nèi)總存在與平面平行的直線(xiàn)
③在側(cè)面上的正投影是面積為定值的三角形
④當(dāng)E,F為中點(diǎn)時(shí),平面截該正方體所得的截面圖形是五邊形
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,,對(duì)任意,有成立.
(1)求的通項(xiàng)公式;
(2)設(shè),,是數(shù)列的前項(xiàng)和,求正整數(shù),使得對(duì)任意,恒成立;
(3)設(shè),是數(shù)列的前項(xiàng)和,若對(duì)任意均有恒成立,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4—4:坐標(biāo)系與參數(shù)方程
已知曲線(xiàn)的參數(shù)方程為(為參數(shù)),以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為.
(Ⅰ)求曲線(xiàn)的直角坐標(biāo)方程及曲線(xiàn)上的動(dòng)點(diǎn)到坐標(biāo)原點(diǎn)的距離的最大值;
(Ⅱ)若曲線(xiàn)與曲線(xiàn)相交于,兩點(diǎn),且與軸相交于點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)是直線(xiàn)上一動(dòng)點(diǎn),PA、PB是圓的兩條切線(xiàn),A、B為切點(diǎn),若四邊形PACB面積的最小值是2,則的值是
A. B. C. 2 D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】運(yùn)貨卡車(chē)以每小時(shí)x千米的速度勻速行駛130千米,按交通法規(guī)限制50≤x≤100(單位:千米/時(shí)).假設(shè)汽油的價(jià)格是每升2元,而汽車(chē)每小時(shí)耗油升,司機(jī)的工資是每小時(shí)14元.
(1)求這次行車(chē)總費(fèi)用y關(guān)于x的表達(dá)式;
(2)當(dāng)x為何值時(shí),這次行車(chē)的總費(fèi)用最低,并求出最低費(fèi)用的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com