在平面直角坐標(biāo)系中,以坐標(biāo)原點為極點,x軸的非負(fù)半軸為極軸建立坐標(biāo)系.已知點A的極坐標(biāo)為,直線的極坐標(biāo)方程為ρcos=a,且點A在直線上.

(1)求a的值及直線的直角坐標(biāo)方程;

(2)圓C的參數(shù)方程為,(α為參數(shù)),試判斷直線與圓的位置關(guān)系.

 

(1)x+y-2=0.(2)相交

【解析】(1)由點A在直線ρcos=a上,可得a=.

所以直線的方程可化為ρcosθ+ρsinθ=2,

從而直線的直角坐標(biāo)方程為x+y-2=0.

(2)由已知得圓C的直角坐標(biāo)方程為(x-1)2+y2=1,

所以圓心為(1,0),半徑r=1,

因為圓心到直線的距離d=<1,所以直線與圓相交

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年江蘇省高郵市高二學(xué)情檢測數(shù)學(xué)試卷(解析版) 題型:填空題

、△ABC所在平面α外一點P到三角形三頂點的距離相等,那么點P在α內(nèi)的射影一定是△ABC的 心(填“內(nèi)”、”外”、“重”、“垂”).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥選修4-4第3課時練習(xí)卷(解析版) 題型:解答題

已知直線l1:(t為參數(shù))與直線l2:2x-4y=5相交于點B,又點A(1,2),求|AB|.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥選修4-4第2課時練習(xí)卷(解析版) 題型:解答題

求證:

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥選修4-4第2課時練習(xí)卷(解析版) 題型:解答題

設(shè)a、b、m∈R+,且,求證:a>b.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥選修4-4第1課時練習(xí)卷(解析版) 題型:解答題

在極坐標(biāo)系中,求圓ρ=2cosθ的垂直于極軸的兩條切線方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥選修4-4第1課時練習(xí)卷(解析版) 題型:解答題

求極坐標(biāo)方程分別為ρ=cosθ與ρ=sinθ的兩個圓的圓心距.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥選修4-2第2課時練習(xí)卷(解析版) 題型:解答題

求矩陣M=的特征值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥選修4-1第2課時練習(xí)卷(解析版) 題型:解答題

如圖,點B在圓O上,M為直徑AC上一點,BM的延長線交圓O于N,∠BNA=45°,若圓O的半徑為2,OA=OM,求MN的長.

 

 

查看答案和解析>>

同步練習(xí)冊答案