【題目】選修4-5:不等式選講
已知函數(shù).
(1)若,求不等式的解集;
(2)若方程有三個不同的解,求實數(shù)的取值范圍.
【答案】(1);(2).
【解析】試題分析:(1)當,得到函數(shù)的解析式,根據(jù)解析式分別求出的解集即可;
(2)由得,則方程有三個不同的解等價于函數(shù)的圖象和函數(shù)的圖象有三個不同交點,作出函數(shù)的圖象,根據(jù)圖象即可求解實數(shù)的取值范圍.
試題解析:
(1)當, ,
所以當時, ,滿足題意;
當時, ,由得,得,所以;
當時, ,不合題意.
綜上,不等式的解集為
(2)由得,
則方程有三個不同的解等價于函數(shù)的圖象和函數(shù)的圖象有三個不同交點,
因為
畫出其圖象,如圖所示,
結(jié)合圖象可知,函數(shù)的圖象和函數(shù)的圖象有三個不同交點時,則有即,
所以實數(shù)的取值范圍為.
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系,將曲線上的每一個點的橫坐標保持不變,縱坐標縮短為原來的,得到曲線,以坐標原點為極點, 軸的正半軸為極軸,建立極坐標系, 的極坐標方程為.
(Ⅰ)求曲線的參數(shù)方程;
(Ⅱ)過原點且關(guān)于軸對稱的兩條直線與分別交曲線于、和、,且點在第一象限,當四邊形的周長最大時,求直線的普通方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在處取得極值,求實數(shù)的值;
(2)若函數(shù))在區(qū)間上為增函數(shù),求實數(shù)的取值范圍;
(3)若當時,方程有實數(shù)根,求實數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),設(shè)為曲線在點處的切線,其中.
(Ⅰ)求直線的方程(用表示);
(Ⅱ)求直線在軸上的截距的取值范圍;
(Ⅲ)設(shè)直線分別與曲線和射線()交于, 兩點,求的最小值及此時的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),,
(1)當時,求曲線在點處的切線方程;
(2)討論函數(shù)的單調(diào)性并判斷有無極值,有極值時求出極值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
已知直線的參數(shù)方程為橢圓的參數(shù)方程為在以坐標原點為極點, 軸正半軸為極軸建立的極坐標系中,點的坐標為.
(1)將點的坐標化為直角坐標系下的坐標,橢圓的參數(shù)方程化為普通方程;
(2)直線與橢圓交于, 兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
(1)當時,求函數(shù)在處的切線方程;
(2)若函數(shù)在定義域上具有單調(diào)性,求實數(shù)的取值范圍;
(3)求證:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校為評估新教改對教學的影響,挑選了水平相當?shù)膬蓚平行班進行對比試驗,甲班采用創(chuàng)新教法,乙班仍采用傳統(tǒng)教法,一段時間后進行水平測試,成績結(jié)果全部落在區(qū)間內(nèi)(滿分100分),并繪制頻率分布直方圖如圖所示,兩個班人數(shù)均為60人,成績80分及以上為優(yōu)良.
(1)根據(jù)以上信息填好聯(lián)表,并判斷出有多大的把握認為學生成績優(yōu)良與班級有關(guān)?
(2)以班級分層抽樣,抽取成績優(yōu)良的5人參加座談,現(xiàn)從5人中隨機選3人來作書面發(fā)言,求發(fā)言人至少有2人來自甲班的概率.
(以下臨界值及公式僅供參考)
, .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為: (為參數(shù)),以原點為極點, 軸正半軸為極軸,建立極坐標系,曲線的極坐標方程為.
(1)求直角坐標系下曲線與曲線的方程;
(2)設(shè)為曲線上的動點,求點到上點的距離的最大值,并求此時點的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com